Functionalized Gelatin/Polysaccharide Hydrogels for Encapsulation of Hepatocytes

Liver diseases represent a considerable burden to patients and healthcare systems. Hydrogels play an important role in the engineering of soft tissues and may be useful for embedding hepatocytes for different therapeutic interventions or the development of in vitro models to study the pathogenesis o...

Full description

Saved in:
Bibliographic Details
Published inGels Vol. 10; no. 4; p. 231
Main Authors Willems, Christian, Qi, Fangdi, Trutschel, Marie-Luise, Groth, Thomas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Liver diseases represent a considerable burden to patients and healthcare systems. Hydrogels play an important role in the engineering of soft tissues and may be useful for embedding hepatocytes for different therapeutic interventions or the development of in vitro models to study the pathogenesis of liver diseases or testing of drugs. Here, we developed two types of hydrogels by crosslinking hydrazide-functionalized gelatin with either oxidized dialdehyde hyaluronan or alginate through the formation of hydrazone bonds. Gel formulations were studied through texture analysis and rheometry, showing mechanical properties comparable to those of liver tissue while also demonstrating long-term stability. The biocompatibility of hydrogels and their ability to host hepatocytes was studied in vitro in comparison to pure gelatin hydrogels crosslinked by transglutaminase using the hepatocellular line HepG2. It was found that HepG2 cells could be successfully embedded in the hydrogels, showing no signs of gel toxicity and proliferating in a 3D environment comparable to pure transglutaminase cross-linked gelatin hydrogels used as control. Altogether, hydrazide gelatin in combination with oxidized polysaccharides makes stable in situ gelling systems for the incorporation of hepatocytes, which may pave the way for use in liver tissue engineering and drug testing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2310-2861
2310-2861
DOI:10.3390/gels10040231