Control of glycerol production by rainbow smelt (Osmerus mordax) to provide freeze resistance and allow foraging at low winter temperatures

The rainbow smelt (Osmerus mordax) is a small anadromous fish that actively feeds under the ice at temperatures as low as the freeze point of seawater. Freezing is avoided through the production of both non-colligative antifreeze protein (AFP) and glycerol that acts in a colligative manner. Glycerol...

Full description

Saved in:
Bibliographic Details
Published inComparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology Vol. 139; no. 3; pp. 347 - 357
Main Authors Driedzic, William R., Ewart, K.Vanya
Format Book Review Journal Article
LanguageEnglish
Published England Elsevier Inc 01.11.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rainbow smelt (Osmerus mordax) is a small anadromous fish that actively feeds under the ice at temperatures as low as the freeze point of seawater. Freezing is avoided through the production of both non-colligative antifreeze protein (AFP) and glycerol that acts in a colligative manner. Glycerol is constantly lost across the gills and skin, thus glycerol production must continue on a sustained basis at low winter temperatures. AFP begins to accumulate in early fall while water temperatures are still high. Glycerol production is triggered when water temperatures decrease to about 5 °C. Glycerol levels rapidly increase with carbon flow from dihydroxyacetone phosphate (DHAP) to glycerol 3-phosphate (G3P) to glycerol. Glucose/glycogen serves as the initial carbon source for glycerol accumulation with amino acids contributing thereafter. The period of glycerol accumulation is associated with increases in GPDH mRNA and PEPCK mRNA followed by elevations in protein synthesis and enzyme activities. Plasma glycerol levels may reach in excess of 500 mM in winter. The high freeze resistance allows rainbow smelt to invade water of low temperature and forage for food. The lower the temperature, the higher the glycerol must be, and the higher the glycerol the greater the loss to the environment through diffusion. During the winter, rainbow smelt feed upon protein rich invertebrates with glycerol production being fueled in part by dietary amino acids via the gluconeogenic pathway. At winter temperatures, glycerol is quantitatively more important than AFP in providing freeze resistance of blood; however, the importance of AFPs to other tissues is yet to be assessed. Glycerol levels rapidly plummet in the spring when water temperature is still close to 0 °C. During this period, freeze resistance must be provided by AFP alone. Overall, the phenomenon of glycerol production by rainbow smelt reveals an elegant connection of biochemistry to ecology that allows this species to exploit an otherwise unavailable food resource.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Feature-3
ObjectType-Review-1
ISSN:1096-4959
1879-1107
DOI:10.1016/j.cbpc.2004.04.007