Identification of a Human Type II Receptor for Bone Morphogenetic Protein-4 That Forms Differential Heteromeric Complexes with Bone Morphogenetic Protein Type I Receptors (∗)

Bone morphogenetic proteins (BMPs) comprise the largest subfamily of TGF-β-related ligands and are known to bind to type I and type II receptor serine/threonine kinases. Although several mammalian BMP type I receptors have been identified, the mammalian BMP type II receptors have remained elusive. W...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 270; no. 38; pp. 22522 - 22526
Main Authors Nohno, Tsutomu, Ishikawa, Tetsuya, Saito, Taiichi, Hosokawa, Keiichi, Noji, Sumihare, Wolsing, Dana Hance, Rosenbaum, Jan S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.09.1995
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bone morphogenetic proteins (BMPs) comprise the largest subfamily of TGF-β-related ligands and are known to bind to type I and type II receptor serine/threonine kinases. Although several mammalian BMP type I receptors have been identified, the mammalian BMP type II receptors have remained elusive. We have isolated a cDNA encoding a novel transmembrane serine/threonine kinase from human skin fibroblasts which we demonstrate here to be a type II receptor that binds BMP-4. This receptor (BRK-3) is distantly related to other known type II receptors and is distinguished from them by an extremely long carboxyl-terminal sequence following the intracellular kinase domain. The BRK-3 gene is widely expressed in a variety of adult tissues. When expressed alone in COS cells, BRK-3 specifically binds BMP-4, but cross-linking of BMP-4 to BRK-3 is undetectable in the absence of either the BRK-1 or BRK-2 BMP type I receptors. Cotransfection of BRK-2 with BRK-3 greatly enhanced affinity labeling of BMP-4 to the type I receptor, in contrast to the affinity labeling pattern observed with the BRK-1 + BRK-3 heteromeric complex. Furthermore, a subpopulation of super-high affinity binding sites is formed in COS cells upon cotransfection only of BRK-2 + BRK-3, suggesting that the different heteromeric BMP receptor complexes have different signaling potential.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.38.22522