Spectroscopic correlation analysis of NMR-based metabonomics in exercise science

Spectroscopic studies of complex clinical fluids have led to the application of a more holistic approach to their chemical analysis becoming more popular and widely employed. The efficient and effective interpretation of multidimensional spectroscopic data relies on many chemometric techniques and o...

Full description

Saved in:
Bibliographic Details
Published inAnalytica chimica acta Vol. 652; no. 1; pp. 173 - 179
Main Authors Kirwan, Gemma M., Coffey, Vernon G., Niere, Julie O., Hawley, John A., Adams, Michael J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 12.10.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spectroscopic studies of complex clinical fluids have led to the application of a more holistic approach to their chemical analysis becoming more popular and widely employed. The efficient and effective interpretation of multidimensional spectroscopic data relies on many chemometric techniques and one such group of tools is represented by so-called correlation analysis methods. Typical of these techniques are two-dimensional correlation analysis and statistical total correlation spectroscopy (STOCSY). Whilst the former has largely been applied to optical spectroscopic analysis, STOCSY was developed and has been applied almost exclusively to NMR metabonomic studies. Using a 1H NMR study of human blood plasma, from subjects recovering from exhaustive exercise trials, the basic concepts and applications of these techniques are examined. Typical information from their application to NMR-based metabonomics is presented and their value in aiding interpretation of NMR data obtained from biological systems is illustrated. Major energy metabolites are identified in the NMR spectra and the dynamics of their appearance and removal from plasma during exercise recovery are illustrated and discussed. The complementary nature of two-dimensional correlation analysis and statistical total correlation spectroscopy are highlighted.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0003-2670
1873-4324
1873-4324
DOI:10.1016/j.aca.2009.07.011