Administration of Antagomir-223 Inhibits Apoptosis, Promotes Angiogenesis and Functional Recovery in Rats with Spinal Cord Injury

MicroRNAs (miRNAs) are recently described as a class of short non-coding RNAs, which play important roles in post-transcriptional gene regulation and involved in many physiological and pathological processes. MicroRNA-223 (miR-223) has been showed highly elevated in the injured spinal cord. However,...

Full description

Saved in:
Bibliographic Details
Published inCellular and molecular neurobiology Vol. 35; no. 4; pp. 483 - 491
Main Authors Liu, Da, Huang, Ying, Jia, Changqing, Li, Yan, Liang, Feng, Fu, Qin
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:MicroRNAs (miRNAs) are recently described as a class of short non-coding RNAs, which play important roles in post-transcriptional gene regulation and involved in many physiological and pathological processes. MicroRNA-223 (miR-223) has been showed highly elevated in the injured spinal cord. However, the potential role and underlying mechanisms of miR-223 in spinal cord injury (SCI) were incompletely understood. In the present study, we observed the persistent high levels of miR-223 in the injured spinal cord at different time points (1, 3, 7, and 14 days) after SCI. Besides, inhibiting miR-223 by intrathecally injection with antagomir-223 significantly improved recovery in hindlimb motor function and attenuated cell apoptosis in spinal cord-injured rats. Additionally, antagomir-223 treatment markedly decreased the pro-apoptotic protein levels, including Bax and cleaved caspase-3, up-regulated the anti-apoptotic Bcl-2 protein level, as well as the expression of GluR2. Moreover, inhibition of miR-223 promoted angiogenesis, as evidenced by the increased CD31 expression and microvascular density. Taken together, our results indicate that inhibition of miR-223 with antagomir-223 exerts protective role in functional recovery, angiogenesis, and anti-apoptosis during SCI. Thereby, miR-223 may be a promising target of therapy for SCI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0272-4340
1573-6830
1573-6830
DOI:10.1007/s10571-014-0142-x