Alternative Splicing of a Specific Cytoplasmic Exon Alters the Binding Characteristics of Murine Platelet/Endothelial Cell Adhesion Molecule-1 (PECAM-1) (∗)

Platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a membrane glycoprotein expressed on endothelial cells, platelets, and leukocytes. Analysis of PECAM-1 expression in the developing mouse embryo has revealed the presence of multiple isoforms of murine PECAM-1 (muPECAM-1) that appeared...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 270; no. 40; pp. 23672 - 23680
Main Authors Yan, Horng-Chin, Baldwin, H. Scott, Sun, Jing, Buck, Clayton A., Albelda, Steven M., DeLisser, Horace M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.10.1995
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a membrane glycoprotein expressed on endothelial cells, platelets, and leukocytes. Analysis of PECAM-1 expression in the developing mouse embryo has revealed the presence of multiple isoforms of murine PECAM-1 (muPECAM-1) that appeared to result from the alternative splicing of exons encoding cytoplasmic domain sequences (exons 10-16) (Baldwin, H. S., Shen, H. M., Yan, H., DeLisser, H. M., Chung, A., Mickanin, C., Trask, T., Kirschbaum, N. E. Newman, P. J., Albelda, S., and Buck, C. A.(1994) Development 120, 2539-2553). To investigate the functional consequences of alternatively spliced muPECAM-1 cytoplasmic domains, L-cells were transfected with cDNA for each variant and their ability to promote cell aggregation was compared. In this assay, full-length muPECAM-1 and all three isoforms containing exon 14 behaved like human PECAM-1 in that they mediated calcium- and heparin-dependent heterophilic aggregation. In contrast, three muPECAM-1 variants, all missing exon 14, mediated calcium- and heparin-independent homophilic aggregation. Exon 14 thus appears to modulate the ligand and adhesive interactions of the extracellular domain of PECAM-1. These findings suggest that alternative splicing may represent a mode of regulating the adhesive function of PECAM-1 in vivo and provides direct evidence that alternative splicing involving the cytoplasmic domain affects the ligand specificity and binding properties of a cell adhesion receptor.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.40.23672