Assessment of Untargeted Metabolomics by Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry to Define Breast Cancer Liquid Biopsy-Based Biomarkers in Plasma Samples

An early diagnosis of cancer is fundamental not only in regard to reducing its mortality rate but also in terms of counteracting the progression of the tumor in the initial stages. Breast cancer (BC) is the most common tumor pathology in women and the second deathliest cancer worldwide, although its...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 25; no. 10; p. 5098
Main Authors González Olmedo, Carmen, Díaz Beltrán, Leticia, Madrid García, Verónica, Palacios Ferrer, José Luis, Cano Jiménez, Alicia, Urbano Cubero, Rocío, Pérez Del Palacio, José, Díaz, Caridad, Vicente, Francisca, Sánchez Rovira, Pedro
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An early diagnosis of cancer is fundamental not only in regard to reducing its mortality rate but also in terms of counteracting the progression of the tumor in the initial stages. Breast cancer (BC) is the most common tumor pathology in women and the second deathliest cancer worldwide, although its survival rate is increasing thanks to improvements in screening programs. However, the most common techniques to detect a breast tumor tend to be time-consuming, unspecific or invasive. Herein, the use of untargeted hydrophilic interaction liquid chromatography-mass spectrometry analysis appears as an analytical technique with potential use for the early detection of biomarkers in liquid biopsies from BC patients. In this research, plasma samples from 134 BC patients were compared with 136 from healthy controls (HC), and multivariate statistical analyses showed a clear separation between four BC phenotypes (LA, LB, HER2, and TN) and the HC group. As a result, we identified two candidate biomarkers that discriminated between the groups under study with a VIP > 1 and an AUC of 0.958. Thus, targeting the specific aberrant metabolic pathways in future studies may allow for better molecular stratification or early detection of the disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25105098