Pleiotropic effects of probenecid on three-dimensional cultures of prostate cancer cells
Chemoresistance remains a persistent challenge in advanced prostate cancer therapy. Probenecid reportedly inhibits multiple drug-efflux transporters; hence, it can be employed as a potential sensitizer for chemotherapy. In the present study, we evaluated the effects of probenecid on three-dimensiona...
Saved in:
Published in | Life sciences (1973) Vol. 278; p. 119554 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chemoresistance remains a persistent challenge in advanced prostate cancer therapy. Probenecid reportedly inhibits multiple drug-efflux transporters; hence, it can be employed as a potential sensitizer for chemotherapy. In the present study, we evaluated the effects of probenecid on three-dimensional (3D)-cultures of prostate cancer cells.
Prostate cancer cell lines, 22Rv1 and PC-3 were cultured as multicellular tumor spheroids. The effects of probenecid were evaluated using the MTT assay for viability, microscopy for spheroid size, and soft agar colony formation assay for anchorage-independent growth.
The 3D-cultured 22Rv1 cells were less sensitive to cisplatin and doxorubicin than two-dimensional (2D) cell culture. Co-administration of probenecid at a low (100 or 300 μM), but not high (500 μM), concentration increased the sensitivity to cisplatin or doxorubicin in 22Rv1 spheroids. Probenecid increased the expression of ABCG2, a multidrug resistance transporter, in a dose-dependent manner. Furthermore, treatment with probenecid alone reduced the growth of 22Rv1 spheroids. Conversely, probenecid inhibited spheroid compaction rather than growth inhibition in 3D-cultured PC-3 cells. Moreover, probenecid inhibited colony formation of 22Rv1 and PC-3 cells in soft agar, as well as downregulated focal adhesion kinase (FAK), a crucial factor in anchorage-independent growth.
In 3D-cultured prostate cancer cells, probenecid demonstrated pleiotropic effects such as chemosensitization, growth suppression, inhibition of spheroid compaction, and suppression of anchorage-independent growth. Elucidating the detailed mechanism underlying these probenecid actions could result in the identification of novel therapeutic targets toward the advanced prostate cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2021.119554 |