Partially linear transformation cure models for interval-censored data

There has been considerable progress in the development of semiparametric transformation models for regression analysis of time-to-event data. However, most of the current work focuses on right-censored data. Significantly less work has been done for interval-censored data, especially when the popul...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 93; pp. 257 - 269
Main Authors Hu, Tao, Xiang, Liming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There has been considerable progress in the development of semiparametric transformation models for regression analysis of time-to-event data. However, most of the current work focuses on right-censored data. Significantly less work has been done for interval-censored data, especially when the population contains a nonignorable cured subgroup. A broad and flexible class of semiparametric transformation cure models is proposed for analyzing interval-censored data in the presence of a cure fraction. The proposed modeling approach combines a logistic regression formulation for the probability of cure with a partially linear transformation model for event times of susceptible subjects. The estimation is achieved by using a spline-based sieve maximum likelihood method, which is computationally efficient and leads to estimators with appealing properties such as consistency, asymptotic normality and semiparametric efficiency. Furthermore, a goodness-of-fit test can be constructed for the proposed models based on the sieve likelihood ratio. Simulations and a real data analysis are provided for illustration of the methodology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2014.08.014