Intraspecific trait variation in plants: a renewed focus on its role in ecological processes

Investigating the causes and consequences of intraspecific trait variation (ITV) in plants is not novel, as it has long been recognized that such variation shapes biotic and abiotic interactions. While evolutionary and population biology have extensively investigated ITV, only in the last 10 years h...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 127; no. 4; pp. 397 - 410
Main Authors Westerband, A C, Funk, J L, Barton, K E
Format Journal Article
LanguageEnglish
Published England Oxford University Press 24.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Investigating the causes and consequences of intraspecific trait variation (ITV) in plants is not novel, as it has long been recognized that such variation shapes biotic and abiotic interactions. While evolutionary and population biology have extensively investigated ITV, only in the last 10 years has interest in ITV surged within community and comparative ecology. Despite this recent interest, still lacking are thorough descriptions of ITV's extent, the spatial and temporal structure of ITV, and stronger connections between ITV and community and ecosystem properties. Our primary aim in this review is to synthesize the recent literature and ask: (1) How extensive is intraspecific variation in traits across scales, and what underlying mechanisms drive this variation? (2) How does this variation impact higher-order ecological processes (e.g. population dynamics, community assembly, invasion, ecosystem productivity)? (3) What are the consequences of ignoring ITV and how can these be mitigated? and (4) What are the most pressing research questions, and how can current practices be modified to suit our research needs? Our secondary aim is to target diverse and underrepresented traits and plant organs, including anatomy, wood, roots, hydraulics, reproduction and secondary chemistry. In addressing these aims, we showcase papers from the Special Issue. Plant ITV plays a key role in determining individual and population performance, species interactions, community structure and assembly, and ecosystem properties. Its extent varies widely across species, traits and environments, and it remains difficult to develop a predictive model for ITV that is broadly applicable. Systematically characterizing the sources (e.g. ontogeny, population differences) of ITV will be a vital step forward towards identifying generalities and the underlying mechanisms that shape ITV. While the use of species means to link traits to higher-order processes may be appropriate in many cases, such approaches can obscure potentially meaningful variation. We urge the reporting of individual replicates and population means in online data repositories, a greater consideration of the mechanisms that enhance and constrain ITV's extent, and studies that span sub-disciplines.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0305-7364
1095-8290
1095-8290
DOI:10.1093/aob/mcab011