Mass Transport in Nanowire Synthesis:An Overview of Scalable Nanomanufacturing

The ability to rationally engineer the growth and nanomanufacturing of one-dimensional nanowires in high volumes has the potential to enable applications of nanoscale materials in a diverse range of fields including energy conversion and storage,catalysis,sensing,medicine,and information technology....

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science & technology Vol. 31; no. 6; pp. 523 - 532
Main Authors Crane, Matthew J., Pauzauskie, Peter J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ability to rationally engineer the growth and nanomanufacturing of one-dimensional nanowires in high volumes has the potential to enable applications of nanoscale materials in a diverse range of fields including energy conversion and storage,catalysis,sensing,medicine,and information technology.This review provides a roadmap for the development of large-scale nanowire processing.While myriad techniques exist for bench-scale nanowire synthesis,these growth strategies typically fall within two major categories:1) anisotropically-catalyzed growth and 2) confined,template-based growth.However,comparisons between growth methods with different mass transport pathways have led to confusion in interpreting observations,in particular Gibbs-Thomson effects.We review mass transport in nanowire synthesis techniques to unify growth models and to allow for direct comparison of observations across different methods.In addition,we discuss the applicability of nanoscale,Gibbs-Thomson effects on mass transport and provide guidelines for the development of new growth models.We explore the scalability of these complex processes with dimensionless numbers and consider the effects of pressure,temperature,and precursor material on nanowire growth.
Bibliography:Nanowire;Mass transport;Modeling;Scalable growth
The ability to rationally engineer the growth and nanomanufacturing of one-dimensional nanowires in high volumes has the potential to enable applications of nanoscale materials in a diverse range of fields including energy conversion and storage,catalysis,sensing,medicine,and information technology.This review provides a roadmap for the development of large-scale nanowire processing.While myriad techniques exist for bench-scale nanowire synthesis,these growth strategies typically fall within two major categories:1) anisotropically-catalyzed growth and 2) confined,template-based growth.However,comparisons between growth methods with different mass transport pathways have led to confusion in interpreting observations,in particular Gibbs-Thomson effects.We review mass transport in nanowire synthesis techniques to unify growth models and to allow for direct comparison of observations across different methods.In addition,we discuss the applicability of nanoscale,Gibbs-Thomson effects on mass transport and provide guidelines for the development of new growth models.We explore the scalability of these complex processes with dimensionless numbers and consider the effects of pressure,temperature,and precursor material on nanowire growth.
21-1315/TG
Matthew J.Crane;Peter J.Pauzauskie;Department of Chemical Engineering,University of Washington,Seattle,WA 98195-1750.USA;Department of Materials Science & Engineering,Seattle.WA 98195-2120,USA;Fundamental Computational Science Directorate,Pacific Northwest National Laboratory,Richland.WA,USA
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1005-0302
1941-1162
DOI:10.1016/j.jmst.2015.01.009