Anatomical Landmark Based Deep Feature Representation for MR Images in Brain Disease Diagnosis

Most automated techniques for brain disease diagnosis utilize hand-crafted (e.g., voxel-based or region-based) biomarkers from structural magnetic resonance (MR) images as feature representations. However, these hand-crafted features are usually high-dimensional or require regions-of-interest define...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 22; no. 5; pp. 1476 - 1485
Main Authors Liu, Mingxia, Zhang, Jun, Nie, Dong, Yap, Pew-Thian, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most automated techniques for brain disease diagnosis utilize hand-crafted (e.g., voxel-based or region-based) biomarkers from structural magnetic resonance (MR) images as feature representations. However, these hand-crafted features are usually high-dimensional or require regions-of-interest defined by experts. Also, because of possibly heterogeneous property between the hand-crafted features and the subsequent model, existing methods may lead to sub-optimal performances in brain disease diagnosis. In this paper, we propose a landmark-based deep feature learning (LDFL) framework to automatically extract patch-based representation from MRI for automatic diagnosis of Alzheimer's disease. We first identify discriminative anatomical landmarks from MR images in a data-driven manner, and then propose a convolutional neural network for patch-based deep feature learning. We have evaluated the proposed method on subjects from three public datasets, including the Alzheimer's disease neuroimaging initiative (ADNI-1), ADNI-2, and the minimal interval resonance imaging in alzheimer's disease (MIRIAD) dataset. Experimental results of both tasks of brain disease classification and MR image retrieval demonstrate that the proposed LDFL method improves the performance of disease classification and MR image retrieval.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2018.2791863