HIV-1 mRNA knockdown with CRISPR/CAS9 enhances neurocognitive function
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HI...
Saved in:
Published in | Journal of neurovirology Vol. 30; no. 1; pp. 71 - 85 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 10
9
, 8.46 × 10
9
, 1.269 × 10
10
, 1.692 × 10
10
, 2.115 × 10
10
, and 2.538 × 10
10
gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e.,
n
= 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1355-0284 1538-2443 1538-2443 |
DOI: | 10.1007/s13365-024-01193-z |