Real-Time In Vivo Intraocular Pressure Monitoring Using an Optomechanical Implant and an Artificial Neural Network

Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 17; no. 22; pp. 7394 - 7404
Main Authors Kim, Kun Ho, Lee, Jeong Oen, Du, Juan, Sretavan, David, Choo, Hyuck
Format Journal Article
LanguageEnglish
Published United States IEEE 15.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments, and improves the overall practicality of the optical IOP-monitoring approach.
AbstractList Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments, and improves the overall practicality of the optical IOP-monitoring approach.
Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments and improves the overall practicality of the optical IOP-monitoring approach.Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments and improves the overall practicality of the optical IOP-monitoring approach.
Author Choo, Hyuck
Du, Juan
Sretavan, David
Kim, Kun Ho
Lee, Jeong Oen
Author_xml – sequence: 1
  givenname: Kun Ho
  orcidid: 0000-0002-9271-9631
  surname: Kim
  fullname: Kim, Kun Ho
  email: khkim@caltech.edu
  organization: Department of Computer Science, California Institute of Technology, Pasadena, CA, USA
– sequence: 2
  givenname: Jeong Oen
  surname: Lee
  fullname: Lee, Jeong Oen
  email: jolee@caltech.edu
  organization: Department of Electrical Engineering and the Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
– sequence: 3
  givenname: Juan
  surname: Du
  fullname: Du, Juan
  email: juan.du@ucsf.edu
  organization: Department of Ophthalmology, University of California at San Francisco, San Francisco, CA, USA
– sequence: 4
  givenname: David
  surname: Sretavan
  fullname: Sretavan, David
  email: david.sretavan@ucsf.edu
  organization: Department of Ophthalmology, University of California at San Francisco, San Francisco, CA, USA
– sequence: 5
  givenname: Hyuck
  orcidid: 0000-0002-8903-7939
  surname: Choo
  fullname: Choo, Hyuck
  email: hchoo@caltech.edu
  organization: Department of Electrical Engineering and the Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29422780$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtrFTEUDlKxD_0BIshAN27mmncmG6GUqldqK9qKu5CbOdOmziTXZKbivzfjvS3ahZucwPfgO-fbRzshBkDoOcELQrB-_eHLydmCYqIWVElMOH6E9ogQTU0Ub3bmP8M1Z-rbLtrP-QZjopVQT9Au1ZxS1eA9lD6D7esLP0C1DNVXfxvLHJONbuptqj4lyHlKUH2MwY8x-XBVXeb5taE6X49xAHdtg3e2r5bDurdhLEg7o0dp9J13viBnMKU_Y_wZ0_en6HFn-wzPtvMAXb49uTh-X5-ev1seH53WjnM11hQcwU3bWikZJg5LB5pjaQUB3hEmtdCdIHTFrMZgCZV2xVdMCNu6RlPQ7AC92fiup9UArYN5r96skx9s-mWi9eZfJPhrcxVvjVC6kVwUg1dbgxR_TJBHM_jsoC9bQpyyoeWgWFJBmkI9fEC9iVMKZT1DtJCcMqlYYb38O9F9lLs6CkFtCC7FnBN0xvnRjj7OAX1vCDZz8WYu3szFm23xRUkeKO_M_6d5sdF4ALjnN1g0nDXsN96buYo
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1038_s41551_021_00719_8
crossref_primary_10_1002_nano_202100137
crossref_primary_10_1117_1_JBO_23_4_047002
crossref_primary_10_1016_j_bioactmat_2024_03_031
crossref_primary_10_1007_s40123_019_0161_2
crossref_primary_10_3390_app14198682
crossref_primary_10_1080_07391102_2024_2310785
crossref_primary_10_1109_ACCESS_2021_3138522
crossref_primary_10_1126_sciadv_adk7805
crossref_primary_10_3390_s25010133
crossref_primary_10_1080_17434440_2020_1761788
Cites_doi 10.1167/iovs.11-7922
10.1167/iovs.14-14925
10.1016/S0886-3350(00)00641-6
10.1167/iovs.12-9483l
10.1007/s00417-002-0460-4
10.1109/10.959322
10.1088/0960-1317/24/4/045012
10.1109/TBME.2012.2212895
10.1007/s00347-010-2198-4
10.1111/cxo.12184
10.1136/bjo.2010.192922
10.1002/adhm.201601356
10.1111/aos.12408
10.1016/j.ophtha.2006.07.060
10.1016/j.ajo.2004.09.062
10.1109/TBME.2015.2485301
10.1109/TBME.2012.2197210
10.1109/TBME.2012.2188893
10.1016/j.ophtha.2014.05.013
10.1038/sj.eye.6701319
10.1109/MSP.2012.2205597
10.1109/JMEMS.2010.2049825
10.1167/iovs.04-0421
10.1038/nm.3621
10.1167/iovs.12-10569
10.1111/j.1755-3768.2008.01404.x
10.1109/TBME.1967.4502474
10.1186/1471-2415-14-30
10.1109/TBME.2012.2205248
10.1109/TBCAS.2010.2081364
10.1109/TBME.2015.2503400
10.1136/bjo.2005.081224
10.1016/0002-9394(88)90236-X
10.1136/bjo.63.12.799
10.1136/bjo.86.9.981
10.1097/00061198-200306000-00009
10.1186/1471-2415-4-4
10.1016/j.sna.2013.08.029
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
L7M
7X8
5PM
DOI 10.1109/JSEN.2017.2760140
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList
Solid State and Superconductivity Abstracts
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 7404
ExternalDocumentID PMC5798645
29422780
10_1109_JSEN_2017_2760140
8058438
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Research to Prevent Blindness unrestricted grant to the UCSF Department of Ophthalmology
  funderid: 10.13039/100001818
– fundername: National Institute of Health
  grantid: EY024582
  funderid: 10.13039/100000002
– fundername: Research to Prevent Blindness Stein Innovation Award
  funderid: 10.13039/100001818
– fundername: Powell Foundation Award
– fundername: HMRI Investigator Award, Caltech CI2 Program
– fundername: NEI NIH HHS
  grantid: R01 EY024582
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
RIG
5VS
AETIX
AGSQL
AIBXA
H~9
NPM
ZY4
7SP
7U5
8FD
L7M
7X8
5PM
ID FETCH-LOGICAL-c447t-2ec108dda66301c06ce9406a51e4f136959f512b3a90ea126ab4b355adc892e93
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Aug 21 14:03:36 EDT 2025
Fri Jul 11 00:01:01 EDT 2025
Mon Jun 30 10:15:57 EDT 2025
Mon Jul 21 05:55:23 EDT 2025
Tue Jul 01 03:36:39 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Wed Aug 27 02:29:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Glaucoma
intraocular pressure
biomedical signal processing
optical sensing
in vivo
implant
neural network
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-2ec108dda66301c06ce9406a51e4f136959f512b3a90ea126ab4b355adc892e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9271-9631
0000-0002-8903-7939
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5798645
PMID 29422780
PQID 1956423673
PQPubID 75733
PageCount 11
ParticipantIDs ieee_primary_8058438
proquest_journals_1956423673
proquest_miscellaneous_2001062518
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798645
pubmed_primary_29422780
crossref_citationtrail_10_1109_JSEN_2017_2760140
crossref_primary_10_1109_JSEN_2017_2760140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-15
PublicationDateYYYYMMDD 2017-11-15
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationTitleAlternate IEEE Sens J
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
sturmer (ref17) 2015; 232
ref32
ref10
ref2
klein (ref4) 1992; 33
ref1
ref39
ref38
ref16
ref19
ref18
herse (ref40) 1990; 31
buchacra (ref44) 2009; 50
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
kingma (ref41) 2015
ref9
ref3
ref6
ref5
lee (ref31) 0
References_xml – ident: ref11
  doi: 10.1167/iovs.11-7922
– ident: ref23
  doi: 10.1167/iovs.14-14925
– ident: ref13
  doi: 10.1016/S0886-3350(00)00641-6
– ident: ref3
  doi: 10.1167/iovs.12-9483l
– ident: ref14
  doi: 10.1007/s00417-002-0460-4
– year: 2015
  ident: ref41
  publication-title: Adam A method for stochastic optimization
– ident: ref33
  doi: 10.1109/10.959322
– ident: ref25
  doi: 10.1088/0960-1317/24/4/045012
– ident: ref36
  doi: 10.1109/TBME.2012.2212895
– volume: 31
  start-page: 2003
  year: 1990
  ident: ref40
  article-title: Corneal edema recovery dynamics in the rabbit. A useful model?
  publication-title: Invest Ophthalmol Vis Sci
– ident: ref22
  doi: 10.1007/s00347-010-2198-4
– ident: ref39
  doi: 10.1111/cxo.12184
– ident: ref21
  doi: 10.1136/bjo.2010.192922
– ident: ref30
  doi: 10.1002/adhm.201601356
– ident: ref5
  doi: 10.1111/aos.12408
– ident: ref9
  doi: 10.1016/j.ophtha.2006.07.060
– volume: 33
  start-page: 2224
  year: 1992
  ident: ref4
  article-title: Intraocular pressure in an American community. The beaver dam eye study
  publication-title: Invest Ophthalmol Vis Sci
– ident: ref8
  doi: 10.1016/j.ajo.2004.09.062
– ident: ref34
  doi: 10.1109/TBME.2015.2485301
– ident: ref37
  doi: 10.1109/TBME.2012.2197210
– ident: ref35
  doi: 10.1109/TBME.2012.2188893
– ident: ref2
  doi: 10.1016/j.ophtha.2014.05.013
– ident: ref42
  doi: 10.1038/sj.eye.6701319
– ident: ref38
  doi: 10.1109/MSP.2012.2205597
– ident: ref27
  doi: 10.1109/JMEMS.2010.2049825
– year: 0
  ident: ref31
  article-title: A microscale optical implant for continuous in-vivo monitoring of intraocular pressure
  publication-title: Microsyst Nanoeng
– ident: ref10
  doi: 10.1167/iovs.04-0421
– ident: ref28
  doi: 10.1038/nm.3621
– ident: ref7
  doi: 10.1167/iovs.12-10569
– ident: ref29
  doi: 10.1111/j.1755-3768.2008.01404.x
– ident: ref24
  doi: 10.1109/TBME.1967.4502474
– volume: 50
  start-page: 2872
  year: 2009
  ident: ref44
  article-title: Does breath holding influence IOP measurements?
  publication-title: Invest Ophthalmol Vis Sci
– ident: ref15
  doi: 10.1186/1471-2415-14-30
– ident: ref19
  doi: 10.1109/TBME.2012.2205248
– ident: ref26
  doi: 10.1109/TBCAS.2010.2081364
– ident: ref32
  doi: 10.1109/TBME.2015.2503400
– volume: 232
  start-page: 162
  year: 2015
  ident: ref17
  article-title: Role of ocular pulse amplitude in glaucoma
  publication-title: Klin Monbl Augenheilkd
– ident: ref1
  doi: 10.1136/bjo.2005.081224
– ident: ref12
  doi: 10.1016/0002-9394(88)90236-X
– ident: ref43
  doi: 10.1136/bjo.63.12.799
– ident: ref16
  doi: 10.1136/bjo.86.9.981
– ident: ref6
  doi: 10.1097/00061198-200306000-00009
– ident: ref18
  doi: 10.1186/1471-2415-4-4
– ident: ref20
  doi: 10.1016/j.sna.2013.08.029
SSID ssj0019757
Score 2.2568293
Snippet Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7394
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vivo
Accuracy
Artificial neural networks
Background noise
Biomedical optical imaging
biomedical signal processing
Broadband
Demodulation
Glaucoma
implant
Implants
Intraocular pressure
Light
Monitoring
neural network
Neural networks
Nonlinear optics
Optical reflection
optical sensing
Optical sensors
Rabbits
Real time
Surgical implants
Title Real-Time In Vivo Intraocular Pressure Monitoring Using an Optomechanical Implant and an Artificial Neural Network
URI https://ieeexplore.ieee.org/document/8058438
https://www.ncbi.nlm.nih.gov/pubmed/29422780
https://www.proquest.com/docview/1956423673
https://www.proquest.com/docview/2001062518
https://pubmed.ncbi.nlm.nih.gov/PMC5798645
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9UwFD5se1Efpm7q6qZE8EnsXdokbfM4ZGMONkGd3LeSX5cNt3bc9Qr613tO2lt2xxCfWkhSEr6T5ktyzncA3ktnjFFWprhWmlRKp1JrOQIiBILsnM7jecfpWXF8Lk-maroGH8dYmBBCdD4LE3qNd_m-dQs6KtuvOC6XolqHddy49bFa442BLqOqJ05gnkpRTocbzIzr_ZNvh2fkxFVOcvIAkZT9LdeSgkD5ynIU86s8RDXve0zeWYKOnsLpsvO958nPyaKzE_fnnq7j_47uGWwOXJQd9MbzHNZCswVP7igUbsGjIUn6xe9tmH9FUplSzAj73LAfl79afGI_2-jKyvpAw3lg_W-C2rPokMBMw77cdO11oChjMgpGmsQIKZZ4KqUe9EoWjMRC4iN6p7-A86PD75-O0yFlQ-qkLLs0Dy7jlfcGiQzPHC9c0EgZjMqCnGWi0ErPkGJYYTQPJssLY6VFymO8q3QetHgJG03bhB1girQLtXBOei9tVllV-lwEN_PW5IUOCfAlcrUb9MwprcZVHfc1XNeEe0241wPuCXwYm9z0Yh7_qrxNGI0VB3gS2FuaRz1M99uagi4laeGJBN6NxThR6fbFNKFd3FK-T9x-I53ET7zqrWn89tIaEyhX7GysQCLgqyXN5UUUA1clCeyr1w_3dhce05goeDJTe7DRzRfhDbKozr6N0-cvi3oYOw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2Vcigc-GgpBAoYiRMiWye2k_iIUKtt6S4StGhvke141QpIqm0WCX49M0426lYV4pRI_pCjN868xDNvAN5KZ4xRVsboK00spVOxtRwBEQJBdk6n4X_HZJqNz-TxTM024P2QC-O9D8FnfkS34Sy_atySfpXtFxzdpSjuwF30-yrpsrWGMwOdB11P3MI8liKf9WeYCdf7x18PphTGlY9SigGRVP8t1ZLSQPmaQwoVVm4jmzdjJq85ocOHMFktv4s9-T5atnbk_txQdvzf53sED3o2yj505vMYNny9DfevaRRuw1ZfJv389w4sviCtjClrhB3V7NvFrwavuM4mBLOyLtVw4Vn3oqDxLIQkMFOzz5dt89NTnjGZBSNVYgQVWypqpRV0WhaM5ELCJcSnP4Gzw4PTj-O4L9oQOynzNk69S3hRVQapDE8cz5zXSBqMSrycJyLTSs-RZFhhNPcmSTNjpUXSYypX6NRrsQubdVP7Z8AUqRdq4ZysKmmTwqq8SoV388qaNNM-Ar5CrnS9ojkV1vhRhi8brkvCvSTcyx73CN4NQy47OY9_dd4hjIaOPTwR7K3Mo-w3_FVJaZeS1PBEBG-GZtyqdP5iat8sr6jiJ36AI6HEKZ521jTMvbLGCPI1Oxs6kAz4ekt9cR7kwFVOEvvq-e2rfQ1b49PJSXlyNP30Au7R81EqZaL2YLNdLP1L5FStfRW20l9DuhuE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+In+Vivo+Intraocular+Pressure+Monitoring+Using+an+Optomechanical+Implant+and+an+Artificial+Neural+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Kim%2C+Kun+Ho&rft.au=Lee%2C+Jeong+Oen&rft.au=Du%2C+Juan&rft.au=Sretavan%2C+David&rft.date=2017-11-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=17&rft.issue=22&rft.spage=7394&rft.epage=7404&rft_id=info:doi/10.1109%2FJSEN.2017.2760140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2017_2760140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon