Real-Time In Vivo Intraocular Pressure Monitoring Using an Optomechanical Implant and an Artificial Neural Network
Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure...
Saved in:
Published in | IEEE sensors journal Vol. 17; no. 22; pp. 7394 - 7404 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
15.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments, and improves the overall practicality of the optical IOP-monitoring approach. |
---|---|
AbstractList | Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments, and improves the overall practicality of the optical IOP-monitoring approach. Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments and improves the overall practicality of the optical IOP-monitoring approach.Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments and improves the overall practicality of the optical IOP-monitoring approach. |
Author | Choo, Hyuck Du, Juan Sretavan, David Kim, Kun Ho Lee, Jeong Oen |
Author_xml | – sequence: 1 givenname: Kun Ho orcidid: 0000-0002-9271-9631 surname: Kim fullname: Kim, Kun Ho email: khkim@caltech.edu organization: Department of Computer Science, California Institute of Technology, Pasadena, CA, USA – sequence: 2 givenname: Jeong Oen surname: Lee fullname: Lee, Jeong Oen email: jolee@caltech.edu organization: Department of Electrical Engineering and the Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA – sequence: 3 givenname: Juan surname: Du fullname: Du, Juan email: juan.du@ucsf.edu organization: Department of Ophthalmology, University of California at San Francisco, San Francisco, CA, USA – sequence: 4 givenname: David surname: Sretavan fullname: Sretavan, David email: david.sretavan@ucsf.edu organization: Department of Ophthalmology, University of California at San Francisco, San Francisco, CA, USA – sequence: 5 givenname: Hyuck orcidid: 0000-0002-8903-7939 surname: Choo fullname: Choo, Hyuck email: hchoo@caltech.edu organization: Department of Electrical Engineering and the Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29422780$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtrFTEUDlKxD_0BIshAN27mmncmG6GUqldqK9qKu5CbOdOmziTXZKbivzfjvS3ahZucwPfgO-fbRzshBkDoOcELQrB-_eHLydmCYqIWVElMOH6E9ogQTU0Ub3bmP8M1Z-rbLtrP-QZjopVQT9Au1ZxS1eA9lD6D7esLP0C1DNVXfxvLHJONbuptqj4lyHlKUH2MwY8x-XBVXeb5taE6X49xAHdtg3e2r5bDurdhLEg7o0dp9J13viBnMKU_Y_wZ0_en6HFn-wzPtvMAXb49uTh-X5-ev1seH53WjnM11hQcwU3bWikZJg5LB5pjaQUB3hEmtdCdIHTFrMZgCZV2xVdMCNu6RlPQ7AC92fiup9UArYN5r96skx9s-mWi9eZfJPhrcxVvjVC6kVwUg1dbgxR_TJBHM_jsoC9bQpyyoeWgWFJBmkI9fEC9iVMKZT1DtJCcMqlYYb38O9F9lLs6CkFtCC7FnBN0xvnRjj7OAX1vCDZz8WYu3szFm23xRUkeKO_M_6d5sdF4ALjnN1g0nDXsN96buYo |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1038_s41551_021_00719_8 crossref_primary_10_1002_nano_202100137 crossref_primary_10_1117_1_JBO_23_4_047002 crossref_primary_10_1016_j_bioactmat_2024_03_031 crossref_primary_10_1007_s40123_019_0161_2 crossref_primary_10_3390_app14198682 crossref_primary_10_1080_07391102_2024_2310785 crossref_primary_10_1109_ACCESS_2021_3138522 crossref_primary_10_1126_sciadv_adk7805 crossref_primary_10_3390_s25010133 crossref_primary_10_1080_17434440_2020_1761788 |
Cites_doi | 10.1167/iovs.11-7922 10.1167/iovs.14-14925 10.1016/S0886-3350(00)00641-6 10.1167/iovs.12-9483l 10.1007/s00417-002-0460-4 10.1109/10.959322 10.1088/0960-1317/24/4/045012 10.1109/TBME.2012.2212895 10.1007/s00347-010-2198-4 10.1111/cxo.12184 10.1136/bjo.2010.192922 10.1002/adhm.201601356 10.1111/aos.12408 10.1016/j.ophtha.2006.07.060 10.1016/j.ajo.2004.09.062 10.1109/TBME.2015.2485301 10.1109/TBME.2012.2197210 10.1109/TBME.2012.2188893 10.1016/j.ophtha.2014.05.013 10.1038/sj.eye.6701319 10.1109/MSP.2012.2205597 10.1109/JMEMS.2010.2049825 10.1167/iovs.04-0421 10.1038/nm.3621 10.1167/iovs.12-10569 10.1111/j.1755-3768.2008.01404.x 10.1109/TBME.1967.4502474 10.1186/1471-2415-14-30 10.1109/TBME.2012.2205248 10.1109/TBCAS.2010.2081364 10.1109/TBME.2015.2503400 10.1136/bjo.2005.081224 10.1016/0002-9394(88)90236-X 10.1136/bjo.63.12.799 10.1136/bjo.86.9.981 10.1097/00061198-200306000-00009 10.1186/1471-2415-4-4 10.1016/j.sna.2013.08.029 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SP 7U5 8FD L7M 7X8 5PM |
DOI | 10.1109/JSEN.2017.2760140 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 7404 |
ExternalDocumentID | PMC5798645 29422780 10_1109_JSEN_2017_2760140 8058438 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Research to Prevent Blindness unrestricted grant to the UCSF Department of Ophthalmology funderid: 10.13039/100001818 – fundername: National Institute of Health grantid: EY024582 funderid: 10.13039/100000002 – fundername: Research to Prevent Blindness Stein Innovation Award funderid: 10.13039/100001818 – fundername: Powell Foundation Award – fundername: HMRI Investigator Award, Caltech CI2 Program – fundername: NEI NIH HHS grantid: R01 EY024582 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION RIG 5VS AETIX AGSQL AIBXA H~9 NPM ZY4 7SP 7U5 8FD L7M 7X8 5PM |
ID | FETCH-LOGICAL-c447t-2ec108dda66301c06ce9406a51e4f136959f512b3a90ea126ab4b355adc892e93 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Thu Aug 21 14:03:36 EDT 2025 Fri Jul 11 00:01:01 EDT 2025 Mon Jun 30 10:15:57 EDT 2025 Mon Jul 21 05:55:23 EDT 2025 Tue Jul 01 03:36:39 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Wed Aug 27 02:29:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Glaucoma intraocular pressure biomedical signal processing optical sensing in vivo implant neural network |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-2ec108dda66301c06ce9406a51e4f136959f512b3a90ea126ab4b355adc892e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9271-9631 0000-0002-8903-7939 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5798645 |
PMID | 29422780 |
PQID | 1956423673 |
PQPubID | 75733 |
PageCount | 11 |
ParticipantIDs | ieee_primary_8058438 proquest_journals_1956423673 proquest_miscellaneous_2001062518 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798645 pubmed_primary_29422780 crossref_citationtrail_10_1109_JSEN_2017_2760140 crossref_primary_10_1109_JSEN_2017_2760140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-15 |
PublicationDateYYYYMMDD | 2017-11-15 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationTitleAlternate | IEEE Sens J |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref33 ref11 sturmer (ref17) 2015; 232 ref32 ref10 ref2 klein (ref4) 1992; 33 ref1 ref39 ref38 ref16 ref19 ref18 herse (ref40) 1990; 31 buchacra (ref44) 2009; 50 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 kingma (ref41) 2015 ref9 ref3 ref6 ref5 lee (ref31) 0 |
References_xml | – ident: ref11 doi: 10.1167/iovs.11-7922 – ident: ref23 doi: 10.1167/iovs.14-14925 – ident: ref13 doi: 10.1016/S0886-3350(00)00641-6 – ident: ref3 doi: 10.1167/iovs.12-9483l – ident: ref14 doi: 10.1007/s00417-002-0460-4 – year: 2015 ident: ref41 publication-title: Adam A method for stochastic optimization – ident: ref33 doi: 10.1109/10.959322 – ident: ref25 doi: 10.1088/0960-1317/24/4/045012 – ident: ref36 doi: 10.1109/TBME.2012.2212895 – volume: 31 start-page: 2003 year: 1990 ident: ref40 article-title: Corneal edema recovery dynamics in the rabbit. A useful model? publication-title: Invest Ophthalmol Vis Sci – ident: ref22 doi: 10.1007/s00347-010-2198-4 – ident: ref39 doi: 10.1111/cxo.12184 – ident: ref21 doi: 10.1136/bjo.2010.192922 – ident: ref30 doi: 10.1002/adhm.201601356 – ident: ref5 doi: 10.1111/aos.12408 – ident: ref9 doi: 10.1016/j.ophtha.2006.07.060 – volume: 33 start-page: 2224 year: 1992 ident: ref4 article-title: Intraocular pressure in an American community. The beaver dam eye study publication-title: Invest Ophthalmol Vis Sci – ident: ref8 doi: 10.1016/j.ajo.2004.09.062 – ident: ref34 doi: 10.1109/TBME.2015.2485301 – ident: ref37 doi: 10.1109/TBME.2012.2197210 – ident: ref35 doi: 10.1109/TBME.2012.2188893 – ident: ref2 doi: 10.1016/j.ophtha.2014.05.013 – ident: ref42 doi: 10.1038/sj.eye.6701319 – ident: ref38 doi: 10.1109/MSP.2012.2205597 – ident: ref27 doi: 10.1109/JMEMS.2010.2049825 – year: 0 ident: ref31 article-title: A microscale optical implant for continuous in-vivo monitoring of intraocular pressure publication-title: Microsyst Nanoeng – ident: ref10 doi: 10.1167/iovs.04-0421 – ident: ref28 doi: 10.1038/nm.3621 – ident: ref7 doi: 10.1167/iovs.12-10569 – ident: ref29 doi: 10.1111/j.1755-3768.2008.01404.x – ident: ref24 doi: 10.1109/TBME.1967.4502474 – volume: 50 start-page: 2872 year: 2009 ident: ref44 article-title: Does breath holding influence IOP measurements? publication-title: Invest Ophthalmol Vis Sci – ident: ref15 doi: 10.1186/1471-2415-14-30 – ident: ref19 doi: 10.1109/TBME.2012.2205248 – ident: ref26 doi: 10.1109/TBCAS.2010.2081364 – ident: ref32 doi: 10.1109/TBME.2015.2503400 – volume: 232 start-page: 162 year: 2015 ident: ref17 article-title: Role of ocular pulse amplitude in glaucoma publication-title: Klin Monbl Augenheilkd – ident: ref1 doi: 10.1136/bjo.2005.081224 – ident: ref12 doi: 10.1016/0002-9394(88)90236-X – ident: ref43 doi: 10.1136/bjo.63.12.799 – ident: ref16 doi: 10.1136/bjo.86.9.981 – ident: ref6 doi: 10.1097/00061198-200306000-00009 – ident: ref18 doi: 10.1186/1471-2415-4-4 – ident: ref20 doi: 10.1016/j.sna.2013.08.029 |
SSID | ssj0019757 |
Score | 2.2568293 |
Snippet | Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7394 |
SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vivo Accuracy Artificial neural networks Background noise Biomedical optical imaging biomedical signal processing Broadband Demodulation Glaucoma implant Implants Intraocular pressure Light Monitoring neural network Neural networks Nonlinear optics Optical reflection optical sensing Optical sensors Rabbits Real time Surgical implants |
Title | Real-Time In Vivo Intraocular Pressure Monitoring Using an Optomechanical Implant and an Artificial Neural Network |
URI | https://ieeexplore.ieee.org/document/8058438 https://www.ncbi.nlm.nih.gov/pubmed/29422780 https://www.proquest.com/docview/1956423673 https://www.proquest.com/docview/2001062518 https://pubmed.ncbi.nlm.nih.gov/PMC5798645 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9UwFD5se1Efpm7q6qZE8EnsXdokbfM4ZGMONkGd3LeSX5cNt3bc9Qr613tO2lt2xxCfWkhSEr6T5ktyzncA3ktnjFFWprhWmlRKp1JrOQIiBILsnM7jecfpWXF8Lk-maroGH8dYmBBCdD4LE3qNd_m-dQs6KtuvOC6XolqHddy49bFa442BLqOqJ05gnkpRTocbzIzr_ZNvh2fkxFVOcvIAkZT9LdeSgkD5ynIU86s8RDXve0zeWYKOnsLpsvO958nPyaKzE_fnnq7j_47uGWwOXJQd9MbzHNZCswVP7igUbsGjIUn6xe9tmH9FUplSzAj73LAfl79afGI_2-jKyvpAw3lg_W-C2rPokMBMw77cdO11oChjMgpGmsQIKZZ4KqUe9EoWjMRC4iN6p7-A86PD75-O0yFlQ-qkLLs0Dy7jlfcGiQzPHC9c0EgZjMqCnGWi0ErPkGJYYTQPJssLY6VFymO8q3QetHgJG03bhB1girQLtXBOei9tVllV-lwEN_PW5IUOCfAlcrUb9MwprcZVHfc1XNeEe0241wPuCXwYm9z0Yh7_qrxNGI0VB3gS2FuaRz1M99uagi4laeGJBN6NxThR6fbFNKFd3FK-T9x-I53ET7zqrWn89tIaEyhX7GysQCLgqyXN5UUUA1clCeyr1w_3dhce05goeDJTe7DRzRfhDbKozr6N0-cvi3oYOw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2Vcigc-GgpBAoYiRMiWye2k_iIUKtt6S4StGhvke141QpIqm0WCX49M0426lYV4pRI_pCjN868xDNvAN5KZ4xRVsboK00spVOxtRwBEQJBdk6n4X_HZJqNz-TxTM024P2QC-O9D8FnfkS34Sy_atySfpXtFxzdpSjuwF30-yrpsrWGMwOdB11P3MI8liKf9WeYCdf7x18PphTGlY9SigGRVP8t1ZLSQPmaQwoVVm4jmzdjJq85ocOHMFktv4s9-T5atnbk_txQdvzf53sED3o2yj505vMYNny9DfevaRRuw1ZfJv389w4sviCtjClrhB3V7NvFrwavuM4mBLOyLtVw4Vn3oqDxLIQkMFOzz5dt89NTnjGZBSNVYgQVWypqpRV0WhaM5ELCJcSnP4Gzw4PTj-O4L9oQOynzNk69S3hRVQapDE8cz5zXSBqMSrycJyLTSs-RZFhhNPcmSTNjpUXSYypX6NRrsQubdVP7Z8AUqRdq4ZysKmmTwqq8SoV388qaNNM-Ar5CrnS9ojkV1vhRhi8brkvCvSTcyx73CN4NQy47OY9_dd4hjIaOPTwR7K3Mo-w3_FVJaZeS1PBEBG-GZtyqdP5iat8sr6jiJ36AI6HEKZ521jTMvbLGCPI1Oxs6kAz4ekt9cR7kwFVOEvvq-e2rfQ1b49PJSXlyNP30Au7R81EqZaL2YLNdLP1L5FStfRW20l9DuhuE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+In+Vivo+Intraocular+Pressure+Monitoring+Using+an+Optomechanical+Implant+and+an+Artificial+Neural+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Kim%2C+Kun+Ho&rft.au=Lee%2C+Jeong+Oen&rft.au=Du%2C+Juan&rft.au=Sretavan%2C+David&rft.date=2017-11-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=17&rft.issue=22&rft.spage=7394&rft.epage=7404&rft_id=info:doi/10.1109%2FJSEN.2017.2760140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2017_2760140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |