Real-Time In Vivo Intraocular Pressure Monitoring Using an Optomechanical Implant and an Artificial Neural Network

Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 17; no. 22; pp. 7394 - 7404
Main Authors Kim, Kun Ho, Lee, Jeong Oen, Du, Juan, Sretavan, David, Choo, Hyuck
Format Journal Article
LanguageEnglish
Published United States IEEE 15.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured and converted to measure IOP. However, its accuracy is limited by background noise and the difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation we improved the speed and accuracy of pressure measurements obtained with an optically probed IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold improvement from previously reported values. This technique allowed real-time tracking of artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled those obtained concurrently using a commercial tonometer and showed consistency within ±2 mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home environments, and improves the overall practicality of the optical IOP-monitoring approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2017.2760140