Morphology of lithium halides in tetrahydrofuran from molecular dynamics with machine learning potentials

The preferred structures of lithium halides (LiX, with X = Cl, Br, I) in organic solvents have been the subject of a wide scientific debate, and a large variety of forms has been isolated and characterized by X-ray diffraction. The identified molecular scaffolds for LiX are diverse, often built on (...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 15; no. 48; pp. 2355 - 2364
Main Authors de Giovanetti, Marinella, Hopen Eliasson, Sondre Hilmar, Bore, Sigbjørn Løland, Eisenstein, Odile, Cascella, Michele
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 11.12.2024
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The preferred structures of lithium halides (LiX, with X = Cl, Br, I) in organic solvents have been the subject of a wide scientific debate, and a large variety of forms has been isolated and characterized by X-ray diffraction. The identified molecular scaffolds for LiX are diverse, often built on (LiX) n rings with a prevalence of rhomboidal arrangements and an appropriate number of solvent or Lewis base molecules coordinating the lithium ions. Much less is known about the structures of LiX in solution, limiting the understanding of the synergistic role of LiX in reactions with various organometallic complexes, as prominently represented by the turbo Grignard reaction. Here, we trained a machine learning potential on ab initio data to explore the complex conformational landscape for systems comprising four LiX moieties in tetrahydrofuran (THF). For all the considered halogens a large number of scaffolds were found at thermally accessible free energy values, indicating that LiX in solution are a diverse ensemble constituted of (LiX) n moieties of various sizes, completed by the appropriate number of coordinating THF. LiCl shows a preference for compact, pseudo-cubane Li 4 Cl 4 (THF) 4 structures, coexisting with open rings. At concentrations close to the solubility limit, LiCl forms hexagonal structures, in analogy with literature observations on pre-nucleating NaCl. LiBr tends to favour less compact, more solvated aggregates. LiI significantly differs from the two other cases, producing highly solvated, monomeric, dimeric, or linear structures. This study provides a comprehensive view of LiX in organic solvent, revealing dynamical polymorphism that is not easily observable experimentally. Using machine-learning potentials with ab initio accuracy, molecular dynamics simulations predict a diversity of structures for lithium halogen salts dissolved in tetrahydrofuran - from more compact LiCl, to more dispersed LiI.
Bibliography:Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4sc04957h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
NFR/262695
ISSN:2041-6520
2041-6539
DOI:10.1039/d4sc04957h