Life on the edge: A new toolbox for population‐level climate change vulnerability assessments

Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack stand...

Full description

Saved in:
Bibliographic Details
Published inMethods in ecology and evolution Vol. 15; no. 11; pp. 2038 - 2058
Main Authors Barratt, Christopher D., Onstein, Renske E., Pinsky, Malin L., Steinfartz, Sebastian, Kühl, Hjalmar S., Forester, Brenna R., Razgour, Orly
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.11.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes. We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range. To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatus and A. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escalerai and M. crypticus). Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.
AbstractList Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes. We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range. To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs ( Afrixalus fornasini, A. delicatus and A. sylvaticus ) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species ( Myotis escalerai and M. crypticus ). Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.
Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes. We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range. To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatus and A. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escalerai and M. crypticus). Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.
Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes.We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range.To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatus and A. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escalerai and M. crypticus).Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.
Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes. We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range. To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatus and A. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escalerai and M. crypticus). Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.
Author Steinfartz, Sebastian
Forester, Brenna R.
Barratt, Christopher D.
Kühl, Hjalmar S.
Pinsky, Malin L.
Onstein, Renske E.
Razgour, Orly
Author_xml – sequence: 1
  givenname: Christopher D.
  orcidid: 0000-0003-3267-8855
  surname: Barratt
  fullname: Barratt, Christopher D.
  email: c.d.barratt@gmail.com
  organization: Wageningen University & Research
– sequence: 2
  givenname: Renske E.
  orcidid: 0000-0002-2295-3510
  surname: Onstein
  fullname: Onstein, Renske E.
  organization: Naturalis Biodiversity Center
– sequence: 3
  givenname: Malin L.
  orcidid: 0000-0002-8523-8952
  surname: Pinsky
  fullname: Pinsky, Malin L.
  organization: University of California Santa Cruz
– sequence: 4
  givenname: Sebastian
  orcidid: 0000-0001-5347-3969
  surname: Steinfartz
  fullname: Steinfartz, Sebastian
  organization: Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig
– sequence: 5
  givenname: Hjalmar S.
  orcidid: 0000-0002-4440-9161
  surname: Kühl
  fullname: Kühl, Hjalmar S.
  organization: International Institute Zittau, Technische Universität Dresden
– sequence: 6
  givenname: Brenna R.
  orcidid: 0000-0002-1608-1904
  surname: Forester
  fullname: Forester, Brenna R.
  organization: U.S. Fish & Wildlife Service
– sequence: 7
  givenname: Orly
  orcidid: 0000-0003-3186-0313
  surname: Razgour
  fullname: Razgour, Orly
  organization: University of Exeter
BookMark eNqFUU1vUzEQtFCRKKVnrpY4p_VXYj9uVRWgUiouIHGz_Ox14sixg-20zY2fwG_sL-lLHkUICbGH3dVqZjSafY1OUk6A0FtKLuhQl4wIOmGUfLugQrDuBTr9fTn5Y3-Fzmtdk6G46ggTp0gvggecE24rwOCW8B5f4QT3uOUc-_yAfS54m7e7aFrI6fHHzwh3ELGNYWMaYLsyaQn4bhcTFNOHGNoem1qh1g2kVt-gl97ECue_5hn6-mH-5frTZPH548311WJihZDdpHOCe8mV6oUkRHnPZkYQ4shUSaeEI9575Z2gygrrmOyklHQK3FHuhPWen6GbUddls9bbMrgre51N0MdDLkttSgs2grayY31Hp070VjhqlVLSc8MUpbOh20Hr3ai1Lfn7DmrT67wrabCvOWWCdoJLMqCmI8qWXGsBr21ox5BaMSFqSvThNfoQvj6Er4-vGXiXf_Ge3f6bMRsZ9yHC_n9wfTuf85H4BKOGoYc
CitedBy_id crossref_primary_10_1111_2041_210X_14429
crossref_primary_10_1016_j_biocon_2024_110927
crossref_primary_10_1016_j_tree_2024_11_007
Cites_doi 10.1038/s41586‐019‐1132‐4
10.1111/nph.15716
10.1016/j.tree.2021.01.002
10.1093/oso/9780199547760.003.0014
10.1093/oso/9780198783411.001.0001
10.1093/molbev/msx225
10.1111/mec.14862
10.1111/1365‐2656.13619
10.1111/mec.12152
10.1093/molbev/msz191
10.1038/nature22900
10.1126/science.aan4380
10.1111/ele.12144
10.1111/j.2041‐210X.2011.00172.x
10.1371/journal.pone.0177459
10.1111/2041‐210X.12775
10.1088/1748‐9326/ac6436
10.1111/j.1461‐0248.2011.01736.x
10.1111/j.1461‐0248.2005.00792.x
10.1038/ncomms9208
10.1111/1365‐2656.13711
10.1111/j.1461‐0248.2009.01350.x
10.1002/ajb2.1836
10.1038/s41559‐021‐01526‐9
10.1111/2041‐210X.13038
10.1111/mec.12741
10.1111/ecog.04404
10.1016/j.tree.2018.09.003
10.1111/eva.13193
10.1002/ajb2.1796
10.1038/s41598‐020‐73391‐8
10.1111/eva.13205
10.1111/2041-210X.14429
10.1111/eva.12137
10.1086/597611
10.1111/mec.13139
10.1007/s10592‐021‐01415‐5
10.1038/s41437‐024‐00710‐4
10.1111/eva.13335
10.1016/j.tree.2010.06.013
10.1073/pnas.1820663116
10.1098/rstb.2018.0174
10.1371/journal.pgen.1008205
10.1038/s41467‐022‐32546‐z
10.1126/science.aaa4984
10.1038/s41467‐021‐23027‐w
10.1016/j.biocon.2016.01.031
10.1111/ddi.12582
10.1111/gcb.13454
10.1146/annurev.ecolsys.37.091305.110100
10.1016/j.biocon.2021.109233
10.1111/1755‐0998.12635
10.1038/536143a
10.1111/ele.12376
10.1002/fee.2552
10.1111/ecog.04960
10.1086/519795
10.1038/s41467‐019‐10924‐4
10.1016/j.ympev.2017.06.022
10.1111/2041‐210X.12984
10.1111/1755‐0998.12694
10.1093/jhered/esac067
10.1038/s41467‐020‐14771‐6
10.1111/gcb.14848
10.1111/mec.14584
10.1111/mec.16748
10.1016/j.envsoft.2013.05.001
10.1111/gcb.13470
10.1111/2041‐210X.13562
10.1038/s41559‐017‐0423‐0
10.1126/sciadv.1701413
10.1111/mec.15253
10.1126/science.abn5642
10.1111/2041‐210X.13834
10.1073/pnas.1602817113
10.1038/nclimate2448
10.1111/jbi.14009
10.1016/j.tree.2022.04.011
10.1111/1365‐2656.13707
10.1038/sdata.2017.122
10.1111/ele.12977
10.1038/nature09670
10.1126/sciadv.aat4858
10.1111/1755‐0998.13070
10.1002/evl3.154
10.1093/bioinformatics/btr330
10.1098/rspb.2005.3164
10.1111/j.1600‐0587.2013.07872.x
10.1146/annurev.ecolsys.110308.120159
10.1111/1755‐0998.13374
10.1002/joc.5086
10.1146/annurev‐ecolsys‐020720‐042553
10.1126/science.abl8974
10.1111/1755‐0998.12669
10.1002/wcc.551
10.1186/s12859‐014‐0356‐4
10.3390/environments10010003
10.1111/j.1755‐263X.2010.00097.x
10.1111/j.1600‐0587.2008.05742.x
10.1126/science.aai9214
10.3389/fevo.2020.00242
10.1111/1365‐2656.13617
10.1111/2041‐210X.13152
10.1111/brv.12852
10.1111/2041‐210X.13722
10.1101/gr.107524.110
10.1111/2041‐210X.12502
10.1111/mec.13513
10.1038/s41576‐020‐00288‐7
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of British Ecological Society.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
DOA
DOI 10.1111/2041-210X.14429
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Genetics Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
EndPage 2058
ExternalDocumentID oai_doaj_org_article_c792b915d4bc4d1c8887f3a28116a28c
10_1111_2041_210X_14429
MEE314429
Genre researchArticle
GrantInformation_xml – fundername: U.S. National Science Foundation
  funderid: ##OISE‐1743711; #CBET‐2137701; #DEB‐2129351
– fundername: Synthesis Centre of iDiv
– fundername: Deutsche Forschungsgemeinschaft
  funderid: DFG FZT 118; 202548816
– fundername: Natural Environment Research Council Independent Research Fellowship
  funderid: NE/M018660/3
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAZKR
ABCUV
ABLJU
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
AAYXX
CITATION
PHGZM
PHGZT
7QG
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
PQGLB
RC3
WIN
PUEGO
ID FETCH-LOGICAL-c4479-9d43f7388b47008ff26a400d0587d84d0fff8fd418c4cd27977715e3d13d4cff3
IEDL.DBID DOA
ISSN 2041-210X
IngestDate Wed Aug 27 01:27:17 EDT 2025
Wed Aug 13 08:53:08 EDT 2025
Tue Jul 01 03:05:00 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Jan 22 17:15:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4479-9d43f7388b47008ff26a400d0587d84d0fff8fd418c4cd27977715e3d13d4cff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8523-8952
0000-0002-4440-9161
0000-0002-2295-3510
0000-0003-3186-0313
0000-0001-5347-3969
0000-0003-3267-8855
0000-0002-1608-1904
OpenAccessLink https://doaj.org/article/c792b915d4bc4d1c8887f3a28116a28c
PQID 3124194370
PQPubID 1016379
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_c792b915d4bc4d1c8887f3a28116a28c
proquest_journals_3124194370
crossref_citationtrail_10_1111_2041_210X_14429
crossref_primary_10_1111_2041_210X_14429
wiley_primary_10_1111_2041_210X_14429_MEE314429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Methods in ecology and evolution
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2019; 10
2019; 15
2006; 37
2022; 23
2019; 19
2022; 20
2020; 11
2024
2012; 15
2020; 10
2019; 569
2011; 470
2014; 23
2009; 12
2018; 9
2010; 20
2018; 2
2010; 25
2019; 28
2014; 15
2022; 37
2010; 3
2018; 33
2021; 48
2019; 5
2022; 91
2019; 36
2021; 261
2009; 173
2018; 21
2018; 27
2019; 222
2018; 18
2016; 7
2018; 359
2019; 42
2005; 8
2022; 13
2020; 26
2022; 15
2007; 81
2024; 133
2022; 97
2022; 109
2016; 25
2022; 17
2017; 546
2022; 376
2023; 32
2017; 8
2021; 21
2009; 40
2017; 3
2017; 4
2021; 22
2013; 22
2015; 348
2017; 355
2017; 114
2022; 377
2021; 36
2020; 8
2020; 4
2013; 16
2017; 37
2020; 51
2017; 34
2016; 113
2019; 116
2020; 43
2011; 27
2014; 7
2016; 196
2023; 10
2021; 5
2015; 6
2023; 14
2013; 47
2005; 272
2015; 5
2015; 18
2021; 108
2017; 23
2009
2007
2015; 24
2021; 14
2012; 3
2013; 36
2021; 12
2009; 32
2023
2017; 17
2016; 536
2017; 12
2019
2023; 114
2014
2019; 374
e_1_2_12_6_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_115_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
IPBES (e_1_2_12_55_1) 2019
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_114_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
IPCC (e_1_2_12_56_1) 2007
e_1_2_12_29_1
e_1_2_12_103_1
e_1_2_12_32_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_113_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_49_1
e_1_2_12_102_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_39_1
IPCC (e_1_2_12_57_1) 2014
e_1_2_12_116_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_105_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_34_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 7
  start-page: 1
  issue: 1
  year: 2014
  end-page: 14
  article-title: Climate change, adaptation, and phenotypic plasticity: The problem and the evidence
  publication-title: Evolutionary Applications
– volume: 19
  start-page: 1497
  issue: 6
  year: 2019
  end-page: 1515
  article-title: An evaluation of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity
  publication-title: Molecular Ecology Resources
– volume: 133
  start-page: 249
  issue: 4
  year: 2024
  end-page: 261
  article-title: A decision‐making framework to maximise the evolutionary potential of populations—Genetic and genomic insights from the common midwife toad ( ) at its range limits
  publication-title: Heredity
– volume: 376
  start-page: 1101
  issue: 6597
  year: 2022
  end-page: 1104
  article-title: Functional connectivity of the world's protected areas
  publication-title: Science
– volume: 34
  start-page: 3023
  issue: 11
  year: 2017
  end-page: 3034
  article-title: Quantifying selection with Pool‐Seq time series data
  publication-title: Molecular Biology and Evolution
– volume: 17
  start-page: 142
  issue: 2
  year: 2017
  end-page: 152
  article-title: Breaking RAD: An evaluation of the utility of restriction site‐associated DNA sequencing for genome scans of adaptation
  publication-title: Molecular Ecology Resources
– volume: 359
  start-page: 83
  issue: 6371
  year: 2018
  end-page: 86
  article-title: Genomic signals of selection predict climate‐driven population declines in a migratory bird
  publication-title: Science
– volume: 37
  start-page: 672
  issue: 8
  year: 2022
  end-page: 682
  article-title: Unifying climate change biology across realms and taxa
  publication-title: Trends in Ecology & Evolution
– year: 2014
– volume: 196
  start-page: 60
  year: 2016
  end-page: 68
  article-title: Assessing the need and potential of assisted migration using species distribution models
  publication-title: Biological Conservation
– volume: 12
  start-page: 805
  issue: 5
  year: 2021
  end-page: 817
  article-title: Removing the bad apples: A simple bioinformatic method to improve loci‐recovery in de novo RADseq data for non‐model organisms
  publication-title: Methods in Ecology and Evolution
– volume: 222
  start-page: 1757
  issue: 4
  year: 2019
  end-page: 1765
  article-title: ΔTraitSDMs: Species distribution models that account for local adaptation and phenotypic plasticity
  publication-title: New Phytologist
– volume: 91
  start-page: 1056
  issue: 6
  year: 2022
  end-page: 1063
  article-title: Understanding climate change response in the age of genomics
  publication-title: Journal of Animal Ecology
– volume: 8
  year: 2020
  article-title: 24. Climate change genomics calls for standardized data reporting
  publication-title: Frontiers in Ecology and Evolution
– volume: 36
  start-page: 2906
  issue: 12
  year: 2019
  end-page: 2921
  article-title: Contemporary demographic reconstruction methods are robust to genome assembly quality: A case study in Tasmanian Devils
  publication-title: Molecular Biology and Evolution
– volume: 12
  start-page: 942
  issue: 9
  year: 2009
  end-page: 948
  article-title: Evolutionary rescue can prevent extinction following environmental change
  publication-title: Ecology Letters
– volume: 272
  start-page: 1885
  issue: 1575
  year: 2005
  end-page: 1891
  article-title: Prioritizing multiple‐use landscapes for conservation: Methods for large multi‐species planning problems
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 109
  start-page: 497
  issue: 4
  year: 2022
  end-page: 499
  article-title: On the use of population genomic time series for environmental monitoring
  publication-title: American Journal of Botany
– volume: 12
  issue: 5
  year: 2017
  article-title: Singularity: Scientific containers for mobility of compute
  publication-title: PLoS One
– volume: 20
  start-page: 1297
  issue: 9
  year: 2010
  end-page: 1303
  article-title: The genome analysis toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data
  publication-title: Genome Research
– volume: 21
  start-page: 1085
  issue: 7
  year: 2018
  end-page: 1096
  article-title: Ecological genomics predicts climate vulnerability in an endangered southwestern songbird
  publication-title: Ecology Letters
– volume: 42
  start-page: 1280
  issue: 7
  year: 2019
  end-page: 1297
  article-title: Eco‐evolution on the edge during climate change
  publication-title: Ecography
– year: 2019
– volume: 5
  issue: 1
  year: 2019
  article-title: Standards for distribution models in biodiversity assessments
  publication-title: Science Advances
– volume: 23
  start-page: 2383
  issue: 10
  year: 2014
  end-page: 2401
  article-title: An overview of the utility of population simulation software in molecular ecology
  publication-title: Molecular Ecology
– volume: 12
  start-page: 2983
  issue: 1
  year: 2021
  article-title: Continent‐wide genomic signatures of adaptation to urbanisation in a songbird across Europe
  publication-title: Nature Communications
– volume: 3
  start-page: 327
  issue: 2
  year: 2012
  end-page: 338
  article-title: Selecting pseudo‐absences for species distribution models: How, where and how many?
  publication-title: Methods in Ecology and Evolution
– volume: 24
  start-page: 2610
  issue: 11
  year: 2015
  end-page: 2618
  article-title: Genetic rescue of small inbred populations: Meta‐analysis reveals large and consistent benefits of gene flow
  publication-title: Molecular Ecology
– year: 2007
– volume: 15
  start-page: 365
  issue: 4
  year: 2012
  end-page: 377
  article-title: Impacts of climate change on the future of biodiversity
  publication-title: Ecology Letters
– volume: 97
  start-page: 1511
  issue: 4
  year: 2022
  end-page: 1538
  article-title: Global genetic diversity status and trends: Towards a suite of essential biodiversity variables (EBVs) for genetic composition
  publication-title: Biological Reviews
– volume: 17
  start-page: 362
  issue: 3
  year: 2017
  end-page: 365
  article-title: Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations
  publication-title: Molecular Ecology Resources
– volume: 3
  issue: 11
  year: 2017
  article-title: Genomic models predict successful coral adaptation if future ocean warming rates are reduced
  publication-title: Science Advances
– volume: 10
  issue: 1
  year: 2020
  article-title: Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee
  publication-title: Scientific Reports
– volume: 348
  start-page: 571
  issue: 6234
  year: 2015
  end-page: 573
  article-title: Accelerating extinction risk from climate change
  publication-title: Science
– volume: 10
  start-page: 744
  issue: 5
  year: 2019
  end-page: 751
  article-title: CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases
  publication-title: Methods in Ecology and Evolution
– volume: 9
  start-page: 1638
  issue: 6
  year: 2018
  end-page: 1647
  article-title: ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms
  publication-title: Methods in Ecology and Evolution
– volume: 40
  start-page: 677
  issue: 1
  year: 2009
  end-page: 697
  article-title: Species distribution models: Ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 91
  start-page: 1163
  issue: 6
  year: 2022
  end-page: 1179
  article-title: Functional genomics of abiotic environmental adaptation in lacertid lizards and other vertebrates
  publication-title: Journal of Animal Ecology
– volume: 25
  start-page: 520
  issue: 9
  year: 2010
  end-page: 529
  article-title: Compromising genetic diversity in the wild: Unmonitored large‐scale release of plants and animals
  publication-title: Trends in Ecology & Evolution
– volume: 27
  start-page: 2156
  year: 2011
  end-page: 2158
  article-title: The variant call format and VCFtools
  publication-title: Bioinformatics
– volume: 17
  issue: 5
  year: 2022
  article-title: Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts
  publication-title: Environmental Research Letters
– volume: 18
  start-page: 18
  issue: 1
  year: 2018
  end-page: 31
  article-title: An integrated framework to identify wildlife populations under threat from climate change
  publication-title: Molecular Ecology Resources
– volume: 2
  issue: 2
  year: 2018
  article-title: Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana
  publication-title: Nature Ecology & Evolution
– volume: 4
  issue: 1
  year: 2017
  article-title: Climatologies at high resolution for the earth's land surface areas
  publication-title: Scientific Data
– volume: 22
  issue: 2
  year: 2021
  article-title: The importance of genomic variation for biodiversity, ecosystems and people
  publication-title: Nature Reviews Genetics
– volume: 23
  start-page: 1048
  issue: 3
  year: 2017
  end-page: 1064
  article-title: Mechanistic variables can enhance predictive models of endotherm distributions: The American pika under current, past, and future climates
  publication-title: Global Change Biology
– volume: 20
  start-page: 507
  issue: 9
  year: 2022
  end-page: 515
  article-title: Linking evolutionary potential to extinction risk: Applications and future directions
  publication-title: Frontiers in Ecology and the Environment
– volume: 22
  start-page: 925
  issue: 4
  year: 2013
  end-page: 946
  article-title: The impact of global climate change on genetic diversity within populations and species
  publication-title: Molecular Ecology
– volume: 91
  start-page: 1073
  issue: 6
  year: 2022
  end-page: 1087
  article-title: Genomic reaction norms inform predictions of plastic and adaptive responses to climate change
  publication-title: Journal of Animal Ecology
– volume: 23
  start-page: 217
  issue: 2
  year: 2022
  end-page: 242
  article-title: New developments in the field of genomic technologies and their relevance to conservation management
  publication-title: Conservation Genetics
– volume: 28
  start-page: 4737
  year: 2019
  end-page: 4754
  article-title: Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics
  publication-title: Molecular Ecology
– volume: 10
  issue: 1
  year: 2023
  article-title: On the inclusion of adaptive potential in species distribution models: Towards a genomic‐informed approach to Forest management and conservation
  publication-title: Environments
– volume: 43
  start-page: 1261
  issue: 9
  year: 2020
  end-page: 1277
  article-title: A standard protocol for reporting species distribution models
  publication-title: Ecography
– volume: 377
  start-page: 1431
  issue: 6613
  year: 2022
  end-page: 1435
  article-title: Genetic diversity loss in the Anthropocene
  publication-title: Science
– volume: 15
  start-page: 356
  issue: 1
  year: 2014
  article-title: ANGSD: Analysis of next generation sequencing data
  publication-title: BMC Bioinformatics
– volume: 26
  start-page: 760
  issue: 2
  year: 2020
  end-page: 771
  article-title: Projecting terrestrial biodiversity intactness with GLOBIO 4
  publication-title: Global Change Biology
– volume: 27
  start-page: 2215
  issue: 9
  year: 2018
  end-page: 2233
  article-title: Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations
  publication-title: Molecular Ecology
– volume: 470
  issue: 7335
  year: 2011
  article-title: Climate change and evolutionary adaptation
  publication-title: Nature
– volume: 47
  start-page: 128
  year: 2013
  end-page: 137
  article-title: Methods and workflow for spatial conservation prioritization using zonation
  publication-title: Environmental Modelling & Software
– start-page: 185
  year: 2009
  end-page: 210
– volume: 51
  start-page: 245
  issue: 1
  year: 2020
  end-page: 269
  article-title: Genomic prediction of (Mal)adaptation across current and future climatic landscapes
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– year: 2024
– volume: 113
  start-page: 7195
  issue: 26
  year: 2016
  end-page: 7200
  article-title: Achieving climate connectivity in a fragmented landscape
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 355
  issue: 6332
  year: 2017
  article-title: Biodiversity redistribution under climate change: Impacts on ecosystems and human well‐being
  publication-title: Science
– volume: 11
  issue: 1
  year: 2020
  article-title: A global assessment of the drivers of threatened terrestrial species richness
  publication-title: Nature Communications
– volume: 36
  start-page: 1058
  issue: 10
  year: 2013
  end-page: 1069
  article-title: A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter
  publication-title: Ecography
– volume: 116
  start-page: 10418
  issue: 21
  year: 2019
  end-page: 10423
  article-title: Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  issue: 1
  year: 2019
  article-title: Climate change vulnerability assessment of species
  publication-title: WIREs Climate Change
– volume: 114
  start-page: 261
  year: 2017
  end-page: 270
  article-title: Impact of species delimitation and sampling on niche models and phylogeographical inference: A case study of the East African reed frog Ahl, 1931
  publication-title: Molecular Phylogenetics and Evolution
– volume: 9
  start-page: 1920
  issue: 9
  year: 2018
  end-page: 1927
  article-title: Would an RRS by any other name sound as RAD?
  publication-title: Methods in Ecology and Evolution
– volume: 546
  issue: 7656
  year: 2017
  article-title: Future threats to biodiversity and pathways to their prevention
  publication-title: Nature
– volume: 173
  start-page: 579
  issue: 5
  year: 2009
  end-page: 588
  article-title: A quantitative survey of local adaptation and fitness trade‐offs
  publication-title: The American Naturalist
– volume: 374
  issue: 1768
  year: 2019
  article-title: Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change
  publication-title: Philosophical Transactions of the Royal Society, B: Biological Sciences
– volume: 37
  start-page: 4302
  issue: 12
  year: 2017
  end-page: 4315
  article-title: WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 36
  start-page: 391
  issue: 5
  year: 2021
  end-page: 401
  article-title: On the interpretations of joint modeling in community ecology
  publication-title: Trends in Ecology & Evolution
– volume: 48
  start-page: 415
  issue: 2
  year: 2021
  end-page: 426
  article-title: Intraspecific differentiation: Implications for niche and distribution modelling
  publication-title: Journal of Biogeography
– volume: 10
  issue: 1
  year: 2019
  article-title: Adaptive responses of animals to climate change are most likely insufficient
  publication-title: Nature Communications
– volume: 14
  start-page: 1202
  issue: 5
  year: 2021
  end-page: 1212
  article-title: Prospects and limitations of genomic offset in conservation management
  publication-title: Evolutionary Applications
– volume: 13
  issue: 1
  year: 2022
  article-title: The combination of genomic offset and niche modelling provides insights into climate change‐driven vulnerability
  publication-title: Nature Communications
– volume: 4
  start-page: 4
  issue: 1
  year: 2020
  end-page: 18
  article-title: Evolutionary genomics can improve prediction of species' responses to climate change
  publication-title: Evolution Letters
– volume: 6
  issue: 1
  year: 2015
  article-title: Integrating regional conservation priorities for multiple objectives into national policy
  publication-title: Nature Communications
– volume: 15
  start-page: 3
  issue: 1
  year: 2022
  end-page: 21
  article-title: Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies
  publication-title: Evolutionary Applications
– volume: 8
  start-page: 1360
  issue: 10
  year: 2017
  end-page: 1373
  article-title: Lost in parameter space: A road map for stacks
  publication-title: Methods in Ecology and Evolution
– volume: 27
  start-page: 4289
  issue: 21
  year: 2018
  end-page: 4308
  article-title: Vanishing refuge? Testing the forest refuge hypothesis in coastal East Africa using genome‐wide sequence data for seven amphibians
  publication-title: Molecular Ecology
– volume: 91
  start-page: 1064
  issue: 6
  year: 2022
  end-page: 1072
  article-title: Harnessing the power of multi‐omics data for predicting climate change response
  publication-title: Journal of Animal Ecology
– volume: 5
  issue: 10
  year: 2021
  article-title: The evolutionary genomics of species' responses to climate change
  publication-title: Nature Ecology & Evolution
– volume: 23
  start-page: 164
  issue: 1
  year: 2017
  end-page: 176
  article-title: Genetically informed ecological niche models improve climate change predictions
  publication-title: Global Change Biology
– volume: 108
  start-page: 2108
  issue: 11
  year: 2021
  end-page: 2111
  article-title: Community genomics: A community‐wide perspective on within‐species genetic diversity
  publication-title: American Journal of Botany
– volume: 33
  start-page: 945
  issue: 12
  year: 2018
  end-page: 957
  article-title: Environmental DNA time series in ecology
  publication-title: Trends in Ecology & Evolution
– volume: 18
  start-page: 1
  issue: 1
  year: 2015
  end-page: 16
  article-title: Ecological genomics meets community‐level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation
  publication-title: Ecology Letters
– volume: 12
  start-page: 2298
  issue: 12
  year: 2021
  end-page: 2309
  article-title: Redundancy analysis: A Swiss army knife for landscape genomics
  publication-title: Methods in Ecology and Evolution
– volume: 569
  issue: 7754
  year: 2019
  article-title: Greater vulnerability to warming of marine versus terrestrial ectotherms
  publication-title: Nature
– volume: 25
  start-page: 454
  year: 2016
  end-page: 469
  article-title: Controlling false discoveries in genome scans for selection
  publication-title: Molecular Ecology
– volume: 23
  start-page: 875
  issue: 8
  year: 2017
  end-page: 887
  article-title: Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa
  publication-title: Diversity and Distributions
– volume: 114
  year: 2023
  article-title: Evolutionary potential mitigates extinction risk under climate change in the endangered southwestern willow flycatcher
  publication-title: Journal of Heredity
– volume: 3
  start-page: 203
  issue: 3
  year: 2010
  end-page: 213
  article-title: Correlative and mechanistic models of species distribution provide congruent forecasts under climate change
  publication-title: Conservation Letters
– volume: 37
  start-page: 637
  issue: 1
  year: 2006
  end-page: 669
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 7
  start-page: 428
  issue: 4
  year: 2016
  end-page: 436
  article-title: Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models
  publication-title: Methods in Ecology and Evolution
– volume: 32
  start-page: 369
  issue: 3
  year: 2009
  end-page: 373
  article-title: BIOMOD—A platform for ensemble forecasting of species distributions
  publication-title: Ecography
– volume: 536
  issue: 7615
  year: 2016
  article-title: Biodiversity: The ravages of guns, nets and bulldozers
  publication-title: Nature
– volume: 81
  start-page: 559
  issue: 3
  year: 2007
  end-page: 575
  article-title: PLINK: A tool set for whole‐genome association and population‐based linkage analyses
  publication-title: The American Journal of Human Genetics
– volume: 32
  start-page: 335
  issue: 2
  year: 2023
  end-page: 349
  article-title: Selective effects of a short transient environmental fluctuation on a natural population
  publication-title: Molecular Ecology
– year: 2023
– volume: 15
  issue: 6
  year: 2019
  article-title: Genomic variation predicts adaptive evolutionary responses better than population bottleneck history
  publication-title: PLoS Genetics
– volume: 5
  issue: 3
  year: 2015
  article-title: Assessing species vulnerability to climate change.
  publication-title: Climate Change
– volume: 21
  start-page: 2749
  year: 2021
  end-page: 2765
  article-title: Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests
  publication-title: Molecular Ecology Resources
– volume: 261
  year: 2021
  article-title: Genetic diversity is considered important but interpreted narrowly in country reports to the convention on biological diversity: Current actions and indicators are insufficient
  publication-title: Biological Conservation
– volume: 14
  start-page: 103
  issue: 1
  year: 2023
  end-page: 116
  article-title: Outstanding challenges and future directions for biodiversity monitoring using citizen science data
  publication-title: Methods in Ecology and Evolution
– volume: 8
  start-page: 993
  issue: 9
  year: 2005
  end-page: 1009
  article-title: Predicting species distribution: Offering more than simple habitat models
  publication-title: Ecology Letters
– volume: 16
  start-page: 1095
  issue: 8
  year: 2013
  end-page: 1103
  article-title: Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species
  publication-title: Ecology Letters
– volume: 14
  start-page: 1239
  issue: 5
  year: 2021
  end-page: 1247
  article-title: Genomic vulnerability and socio‐economic threats under climate change in an African rainforest bird
  publication-title: Evolutionary Applications
– ident: e_1_2_12_91_1
  doi: 10.1038/s41586‐019‐1132‐4
– ident: e_1_2_12_17_1
  doi: 10.1111/nph.15716
– ident: e_1_2_12_92_1
  doi: 10.1016/j.tree.2021.01.002
– ident: e_1_2_12_6_1
  doi: 10.1093/oso/9780199547760.003.0014
– ident: e_1_2_12_43_1
  doi: 10.1093/oso/9780198783411.001.0001
– ident: e_1_2_12_107_1
  doi: 10.1093/molbev/msx225
– ident: e_1_2_12_8_1
  doi: 10.1111/mec.14862
– ident: e_1_2_12_65_1
  doi: 10.1111/1365‐2656.13619
– ident: e_1_2_12_84_1
  doi: 10.1111/mec.12152
– ident: e_1_2_12_83_1
  doi: 10.1093/molbev/msz191
– ident: e_1_2_12_109_1
  doi: 10.1038/nature22900
– ident: e_1_2_12_12_1
  doi: 10.1126/science.aan4380
– ident: e_1_2_12_94_1
  doi: 10.1111/ele.12144
– ident: e_1_2_12_7_1
  doi: 10.1111/j.2041‐210X.2011.00172.x
– ident: e_1_2_12_62_1
  doi: 10.1371/journal.pone.0177459
– ident: e_1_2_12_80_1
  doi: 10.1111/2041‐210X.12775
– ident: e_1_2_12_81_1
  doi: 10.1088/1748‐9326/ac6436
– ident: e_1_2_12_16_1
  doi: 10.1111/j.1461‐0248.2011.01736.x
– ident: e_1_2_12_45_1
  doi: 10.1111/j.1461‐0248.2005.00792.x
– ident: e_1_2_12_14_1
  doi: 10.1038/ncomms9208
– ident: e_1_2_12_48_1
– ident: e_1_2_12_64_1
  doi: 10.1111/1365‐2656.13711
– ident: e_1_2_12_15_1
  doi: 10.1111/j.1461‐0248.2009.01350.x
– ident: e_1_2_12_87_1
  doi: 10.1002/ajb2.1836
– ident: e_1_2_12_2_1
  doi: 10.1038/s41559‐021‐01526‐9
– ident: e_1_2_12_21_1
  doi: 10.1111/2041‐210X.13038
– ident: e_1_2_12_49_1
  doi: 10.1111/mec.12741
– ident: e_1_2_12_75_1
  doi: 10.1111/ecog.04404
– ident: e_1_2_12_5_1
  doi: 10.1016/j.tree.2018.09.003
– ident: e_1_2_12_105_1
  doi: 10.1111/eva.13193
– ident: e_1_2_12_102_1
  doi: 10.1002/ajb2.1796
– ident: e_1_2_12_89_1
  doi: 10.1038/s41598‐020‐73391‐8
– ident: e_1_2_12_98_1
  doi: 10.1111/eva.13205
– ident: e_1_2_12_10_1
  doi: 10.1111/2041-210X.14429
– ident: e_1_2_12_72_1
  doi: 10.1111/eva.12137
– ident: e_1_2_12_47_1
  doi: 10.1086/597611
– ident: e_1_2_12_42_1
  doi: 10.1111/mec.13139
– ident: e_1_2_12_104_1
  doi: 10.1007/s10592‐021‐01415‐5
– ident: e_1_2_12_11_1
  doi: 10.1038/s41437‐024‐00710‐4
– ident: e_1_2_12_27_1
  doi: 10.1111/eva.13335
– ident: e_1_2_12_63_1
  doi: 10.1016/j.tree.2010.06.013
– ident: e_1_2_12_96_1
  doi: 10.1073/pnas.1820663116
– ident: e_1_2_12_40_1
  doi: 10.1098/rstb.2018.0174
– ident: e_1_2_12_77_1
  doi: 10.1371/journal.pgen.1008205
– ident: e_1_2_12_26_1
  doi: 10.1038/s41467‐022‐32546‐z
– ident: e_1_2_12_110_1
  doi: 10.1126/science.aaa4984
– ident: e_1_2_12_101_1
  doi: 10.1038/s41467‐021‐23027‐w
– ident: e_1_2_12_46_1
  doi: 10.1016/j.biocon.2016.01.031
– ident: e_1_2_12_9_1
  doi: 10.1111/ddi.12582
– ident: e_1_2_12_68_1
  doi: 10.1111/gcb.13454
– ident: e_1_2_12_82_1
  doi: 10.1146/annurev.ecolsys.37.091305.110100
– ident: e_1_2_12_51_1
  doi: 10.1016/j.biocon.2021.109233
– volume-title: Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services
  year: 2019
  ident: e_1_2_12_55_1
– ident: e_1_2_12_67_1
  doi: 10.1111/1755‐0998.12635
– ident: e_1_2_12_69_1
  doi: 10.1038/536143a
– ident: e_1_2_12_44_1
– ident: e_1_2_12_35_1
  doi: 10.1111/ele.12376
– ident: e_1_2_12_37_1
  doi: 10.1002/fee.2552
– ident: e_1_2_12_116_1
  doi: 10.1111/ecog.04960
– ident: e_1_2_12_93_1
  doi: 10.1086/519795
– ident: e_1_2_12_95_1
  doi: 10.1038/s41467‐019‐10924‐4
– ident: e_1_2_12_19_1
  doi: 10.1016/j.ympev.2017.06.022
– ident: e_1_2_12_86_1
  doi: 10.1111/2041‐210X.12984
– ident: e_1_2_12_97_1
  doi: 10.1111/1755‐0998.12694
– ident: e_1_2_12_38_1
  doi: 10.1093/jhered/esac067
– ident: e_1_2_12_53_1
  doi: 10.1038/s41467‐020‐14771‐6
– ident: e_1_2_12_103_1
  doi: 10.1111/gcb.14848
– ident: e_1_2_12_39_1
  doi: 10.1111/mec.14584
– ident: e_1_2_12_88_1
  doi: 10.1111/mec.16748
– ident: e_1_2_12_66_1
  doi: 10.1016/j.envsoft.2013.05.001
– ident: e_1_2_12_54_1
  doi: 10.1111/gcb.13470
– ident: e_1_2_12_25_1
  doi: 10.1111/2041‐210X.13562
– ident: e_1_2_12_32_1
  doi: 10.1038/s41559‐017‐0423‐0
– ident: e_1_2_12_13_1
  doi: 10.1126/sciadv.1701413
– ident: e_1_2_12_99_1
  doi: 10.1111/mec.15253
– ident: e_1_2_12_31_1
  doi: 10.1126/science.abn5642
– ident: e_1_2_12_58_1
  doi: 10.1111/2041‐210X.13834
– ident: e_1_2_12_70_1
  doi: 10.1073/pnas.1602817113
– ident: e_1_2_12_79_1
  doi: 10.1038/nclimate2448
– ident: e_1_2_12_28_1
  doi: 10.1111/jbi.14009
– ident: e_1_2_12_90_1
  doi: 10.1016/j.tree.2022.04.011
– ident: e_1_2_12_76_1
  doi: 10.1111/1365‐2656.13707
– ident: e_1_2_12_59_1
  doi: 10.1038/sdata.2017.122
– ident: e_1_2_12_100_1
  doi: 10.1111/ele.12977
– ident: e_1_2_12_52_1
  doi: 10.1038/nature09670
– ident: e_1_2_12_4_1
  doi: 10.1126/sciadv.aat4858
– ident: e_1_2_12_18_1
  doi: 10.1111/1755‐0998.13070
– ident: e_1_2_12_112_1
  doi: 10.1002/evl3.154
– ident: e_1_2_12_29_1
  doi: 10.1093/bioinformatics/btr330
– ident: e_1_2_12_74_1
  doi: 10.1098/rspb.2005.3164
– ident: e_1_2_12_73_1
  doi: 10.1111/j.1600‐0587.2013.07872.x
– ident: e_1_2_12_30_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_12_34_1
  doi: 10.1111/1755‐0998.13374
– volume-title: Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_12_56_1
– ident: e_1_2_12_33_1
  doi: 10.1002/joc.5086
– ident: e_1_2_12_22_1
  doi: 10.1146/annurev‐ecolsys‐020720‐042553
– ident: e_1_2_12_20_1
  doi: 10.1126/science.abl8974
– ident: e_1_2_12_24_1
  doi: 10.1111/1755‐0998.12669
– ident: e_1_2_12_36_1
  doi: 10.1002/wcc.551
– ident: e_1_2_12_61_1
  doi: 10.1186/s12859‐014‐0356‐4
– ident: e_1_2_12_111_1
  doi: 10.3390/environments10010003
– ident: e_1_2_12_60_1
  doi: 10.1111/j.1755‐263X.2010.00097.x
– ident: e_1_2_12_108_1
  doi: 10.1111/j.1600‐0587.2008.05742.x
– ident: e_1_2_12_85_1
  doi: 10.1126/science.aai9214
– ident: e_1_2_12_113_1
  doi: 10.3389/fevo.2020.00242
– ident: e_1_2_12_114_1
  doi: 10.1111/1365‐2656.13617
– ident: e_1_2_12_115_1
  doi: 10.1111/2041‐210X.13152
– volume-title: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_12_57_1
– ident: e_1_2_12_50_1
  doi: 10.1111/brv.12852
– ident: e_1_2_12_23_1
  doi: 10.1111/2041‐210X.13722
– ident: e_1_2_12_71_1
  doi: 10.1101/gr.107524.110
– ident: e_1_2_12_78_1
  doi: 10.1111/2041‐210X.12502
– ident: e_1_2_12_3_1
– ident: e_1_2_12_41_1
  doi: 10.1111/mec.13513
– ident: e_1_2_12_106_1
  doi: 10.1038/s41576‐020‐00288‐7
SSID ssj0000389024
Score 2.399743
Snippet Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic...
Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2038
SubjectTerms adaptation
Afrixalus delicatus
Afrixalus fornasini
Afrixalus sylvaticus
Anthropogenic factors
Biodiversity
circuit theory
Climate change
climate change vulnerability assessment
Climate prediction
Climatic conditions
conservation
Data structures
Datasets
Evolution
Frogs
Gene sequencing
Genetic diversity
Genomics
Genotypes
Geographical distribution
global change
informatics
Myotis crypticus
Myotis escalerai
Population decline
Population genetics
Population sampling
Population studies
predictive modelling
Species
Whole genome sequencing
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PSx0xEA9WKfRSWtvSp7bk4KGXbTfJ7EvSm8oTKa14qOAt5G8Rlrfie4re-hH8jH4SJ9l9ixZK6WVZlmRJZjKb32RnfkPIrpPOi6SbKmr0TcCCrCwTUCWhgfHgpA0lyvd4enQK386aVTRhzoXp-SHGA7dsGeV7nQ3cusUjI-c1sAodlrP8f5LrZ2QjJ9hm-nwOJ-MxS-aPq0tp27H9QPCT43n-eMeTvalQ-D_BnY_Ra9l-Dl-RlwNupHu9ol-TtTjfJM9nhXP69g0x389TpN2cIp6j-YjsK92jiJjpsuta191QxKb0YizWdf_7rs3RQtS35whZI-3zf-n1VZtZqEvA7C21I2vn4i05PZz9PDiqhtoJlQeQutIBRJJCKQcSt_mU-NSiuYa6UTIoCHVKSaUATHnwgUuEgZI1UQQmAviUxDuyPu_m8T2hKkWV4w-1dx6sd64WAiyPCAVCsAkm5PNKasYPxOK5vkVrVg5GFrPJYjZFzBPyaexw0XNq_L3pflbD2CyTYZcH3eUvM9iW8VJzp1kTAAcYmEenXiZhuWJsilc_ITsrJZrBQhdGILBhOCtZT8iXoth_jcX8mM1Eudv67x7b5AXHZdgnMe6Q9eXlVfyAaGbpPpb1-gCKO-hh
  priority: 102
  providerName: Wiley-Blackwell
Title Life on the edge: A new toolbox for population‐level climate change vulnerability assessments
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.14429
https://www.proquest.com/docview/3124194370
https://doaj.org/article/c792b915d4bc4d1c8887f3a28116a28c
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYoqFIvFaWtui2sfODAJSW2J2unN0BBqCoIVUXam-VfCSnaIFgQ3HgEnrFP0rGTXbaHiksvURQ50mRm7PkmHn9DyK6V1olYV0WoMTcBA7IwTEARRQ2MeyuNz1W-Z5OTC_g-raYrrb5STVhPD9wrbt_JmtuaVR6sA88cZmwyCsMVYxO8urT6YsxbSabyGizS_hkMXD6pdIeXwArMb6ZpOzMDyucwlNn6_4KYq0A1R5rjTfJ2gIj0oBftHVkLsy3yusn00g_vif5xGQPtZhShG01_w77RA4rgmM67rrXdPUUYSq-Wfbl-Pz61qTCIuvYS0Wmg_VFfenfbJsLpXBv7QM2SoPPmA7k4bn4dnRRDm4TCAci6qD2IKIVSFiRG9Bj5xODM9GWlpFfgyxijih6YcuA8l4j4JKuC8Ex4cDGKj2R91s3CJ0JVDCqVGtYOlW2ctaUQYHjAqO-9iTAiXxda027gEE-tLFq9yCWSmnVSs85qHpG95QtXPX3Gv4ceJjMshyXe6_wAvUEP3qBf8oYR2V4YUQ-T8UYLxDAMv0qWI7KfDfuSLPq0aUS--_w_pPpC3nD0xv4I4zZZn1_fhh3EMnM7Jq84nI_JxmFzdv5znJ34D0ZB72w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BEYIL4lcsFPCBA5dAbE_WNreCtlpgW3Fopb1Z_q0qRZuq3SJ64xF4Rp4E28lGWySEuERRZEf2jCf-ZjL-BuC1FdbxqJoqqOSboEFRGcqxilwhZd4K40uW7-F0foyfl81y6yxMzw8xBtyyZZTvdTbwHJDesnJWI62Sx7LMPyiZugm3cMpENk6GX8c4SyaQq0tt27H9wPCTE3r-eMe1zalw-F8Dntvwtew_-_fh3gAcyV6v6QdwI6wewu1ZIZ2-egR6cRoD6VYkATqSY2TvyR5JkJmsu6613XeSwCk5G6t1_frxs83pQsS1pwmzBtIfACbfLttMQ10yZq-IGWk7Lx7D8f7s6OO8GoonVA5RqEp55FFwKS2KtM_HyKYm2auvGym8RF_HGGX0SKVD55lIOFDQJnBPuUcXI38CO6tuFZ4CkTHInIConHVonLU152hYSFjAexNxAm83UtNuYBbPBS5avfEwsph1FrMuYp7Am7HDWU-q8femH7IaxmaZDbs86M5P9GBc2gnFrKKNxzRAT13y6kXkhklKp-nqJrC7UaIeTPRC84RsaJqVqCfwrij2X2PRB7MZL3fP_rvHK7gzPzpY6MWnwy_P4S5LS7I_0bgLO-vzy_AiQZu1fVnW7m8mIOvN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagFYgL4lcsLeADBy6B2J6s7d62ZVcFSsWBRRUXK_6rKkWbVbtF7Y1H6DPyJIydbNQiIcQliiI7smc88TeT8TeEvLbSOhF1VQSNvgnUIIuaCSii0MC4t7L2Ocv3cLw_h49H1TqbMJ2F6fghhoBbsoz8vU4GvvTxmpHzEliBDstR-j_J9W2ymbjycGFvTr7Nv8-HQEtikCtzcduhR0_xkzJ6_njLjd0pk_jfQJ7X8WvegGYPyP0eOdJJp-qH5FZYPCJ3ppl1-vIxMQcnMdB2QRHR0RQk26ETipiZrtq2se0FRXRKl0O5rl8_r5qUL0Rdc4KgNdDuBDD9cd4kHuqcMntJ64G38-wJmc-mX_f2i756QuEApC60BxGlUMqCxI0-Rj6u0WB9WSnpFfgyxqiiB6YcOM8lAkHJqiA8Ex5cjOIp2Vi0i_CMUBWDShmI2lkHtbO2FAJqHhAMeF9HGJG3a6kZ11OLpwoXjVm7GEnMJonZZDGPyJuhw7Jj1fh7092khqFZosPOD9rTY9Nbl3FSc6tZ5QEH6JlDt15GUXPF2BivbkS210o0vY2eGYHQhuGsZDki77Ji_zUW83k6Ffnu-X_3eEXufnk_MwcfDj9tkXscV2R3onGbbKxOz8MLhDYr-7JfvL8BT9HsxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+on+the+edge%3A+A+new+toolbox+for+population%E2%80%90level+climate+change+vulnerability+assessments&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Barratt%2C+Christopher+D.&rft.au=Onstein%2C+Renske+E.&rft.au=Pinsky%2C+Malin+L.&rft.au=Steinfartz%2C+Sebastian&rft.date=2024-11-01&rft.issn=2041-210X&rft.eissn=2041-210X&rft.volume=15&rft.issue=11&rft.spage=2038&rft.epage=2058&rft_id=info:doi/10.1111%2F2041-210X.14429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_2041_210X_14429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon