Life on the edge: A new toolbox for population‐level climate change vulnerability assessments

Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack stand...

Full description

Saved in:
Bibliographic Details
Published inMethods in ecology and evolution Vol. 15; no. 11; pp. 2038 - 2058
Main Authors Barratt, Christopher D., Onstein, Renske E., Pinsky, Malin L., Steinfartz, Sebastian, Kühl, Hjalmar S., Forester, Brenna R., Razgour, Orly
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.11.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes. We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range. To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatus and A. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escalerai and M. crypticus). Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2041-210X
2041-210X
DOI:10.1111/2041-210X.14429