Radial-motion assisted command shapers for nonlinear tower crane rotational slewing

Input shaping is an effective method for reducing motion-induced vibration. The majority of input-shaping theory is based on linear analysis; however, input shaping has proven effective on moderately nonlinear systems. This work investigates the effect of nonlinear crane dynamics on the performance...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 18; no. 5; pp. 523 - 531
Main Authors Blackburn, David, Lawrence, Jason, Danielson, Jon, Singhose, William, Kamoi, Tatsuaki, Taura, Ayako
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Input shaping is an effective method for reducing motion-induced vibration. The majority of input-shaping theory is based on linear analysis; however, input shaping has proven effective on moderately nonlinear systems. This work investigates the effect of nonlinear crane dynamics on the performance of input shaping. Typical bridge cranes are driven using Cartesian motions and behave nearly linearly. The rotational structure of a tower crane makes nonlinearities more apparent. Nonlinear equations of motion are presented and experimentally verified. Novel command-shaping algorithms are then proposed for reducing vibration during the nonlinear slewing motions of tower cranes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0967-0661
1873-6939
DOI:10.1016/j.conengprac.2010.01.014