Can Cosmologically Coupled Mass Growth of Black Holes Solve the Mass Gap Problem?

Observations of elliptical galaxies suggest that black holes (BHs) might serve as dark energy candidates, coupled to the expansion of the Universe. According to this hypothesis, the mass of a BH could increase as the Universe expands. BH low-mass X-ray binaries (LMXBs) in the Galactic disk were born...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 956; no. 2; pp. 128 - 134
Main Authors Gao, Shi-Jie, Li, Xiang-Dong
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.10.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Observations of elliptical galaxies suggest that black holes (BHs) might serve as dark energy candidates, coupled to the expansion of the Universe. According to this hypothesis, the mass of a BH could increase as the Universe expands. BH low-mass X-ray binaries (LMXBs) in the Galactic disk were born several gigayears ago, making the coupling effect potentially significant. In this work, we calculate the evolution of BH binaries with a binary population synthesis method to examine the possible influence of cosmologically coupled growth of BHs, if it really exists. The measured masses of the compact objects in LMXBs show a gap around ∼2.5–5 M ⊙ , separating the most-massive neutron stars from the least-massive BHs. Our calculated results indicate that considering the mass growth seems to (partially) account for the mass gap and the formation of compact BH LMXBs, alleviating the challenges in modeling the formation and evolution of BH LMXBs with traditional theory. However, critical observational evidence like the detection of intermediate-mass BH binaries is required to test this hypothesis.
Bibliography:AAS47537
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ace890