Acceleration of Bone Defect Healing and Regeneration by Low-Intensity Ultrasound Radiation Force in a Rat Tibial Model
The objective was to evaluate the effect of low-intensity pulsed ultrasound (LIPUS)-induced acoustic radiation force on trabecular bone defect repair and healing in a rat tibial model. A uniform surgical defect, 3.5 mm in diameter, was generated in the proximal bilateral tibial region of rats (N = 2...
Saved in:
Published in | Ultrasound in medicine & biology Vol. 44; no. 12; pp. 2646 - 2654 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The objective was to evaluate the effect of low-intensity pulsed ultrasound (LIPUS)-induced acoustic radiation force on trabecular bone defect repair and healing in a rat tibial model. A uniform surgical defect, 3.5 mm in diameter, was generated in the proximal bilateral tibial region of rats (N = 20). LIPUS was applied to the defects in the left tibia for 20 min every day for 2 wk. Contralateral defects in the right tibia served as a control without active LIPUS treatment. The micro-computed tomography data revealed that LIPUS-treated tibia exhibited higher bone volume/total volume, connectivity density, trabecular number, and bone mineral density and significantly lower trabecular separation. Histomorphometry analysis indicated a similar trend. Mechanical testing data revealed that LIPUS treatment significantly increased bone stiffness relative to that of the control group. Short-term (2-wk) LIPUS therapy initiated trabecular bone repair and regeneration in large trabecular bone defects, whereas cortical bone remained in the initial non-mineralization stage. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0301-5629 1879-291X |
DOI: | 10.1016/j.ultrasmedbio.2018.08.002 |