Effect of Oxidization Temperatures and Aging on Performance of Carbonate Melt Oxidized Iridium Oxide pH Electrode
Iridium oxide pH electrodes employing the carbonate melt oxidation method were fabricated with oxidation temperatures of 750 °C, 800 °C and 850 °C, respectively. Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed that the oxide film regularized with the increase in ox...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 21; p. 4756 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Iridium oxide pH electrodes employing the carbonate melt oxidation method were fabricated with oxidation temperatures of 750 °C, 800 °C and 850 °C, respectively. Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed that the oxide film regularized with the increase in oxidation temperatures. The pH response, response time and long-term stability of the electrodes indicated that the electrodes made at 850 °C had the best performance. X-ray photoelectron spectra (XPS) surveys investigated the change in the electrodes’ chemical composition and element oxidation states at 850 °C, and the results showed that the relative content of Ir3+ had increased by 23.9%, and the Ir4+ and Ir6+ had decreased by 10.9% and 13%, respectively, in the surface oxide layer after one month of aging. However, the relative contents of Ir3+, Ir4+ and Ir6+ were almost constant for the inner oxide layer. Meanwhile, the XPS result also indicated that the outer oxide layer of the electrode had a higher hydration degree than the inner oxide layer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19214756 |