An Integrated Front-end Circuit Board for Air-Coupled CMUT Burst-Echo Imaging
To conduct burst-echo imaging with air-coupled capacitive micromachined ultrasonic transducers (CMUTs) using the same elements in transmission and reception, this work proposes a dedicated and integrated front-end circuit board design to build an imaging system. To the best of the authors’ knowledge...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 21; p. 6128 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
28.10.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To conduct burst-echo imaging with air-coupled capacitive micromachined ultrasonic transducers (CMUTs) using the same elements in transmission and reception, this work proposes a dedicated and integrated front-end circuit board design to build an imaging system. To the best of the authors’ knowledge, this is the first air-coupled CMUT burst-echo imaging using the same elements in transmission and reception. The reported front-end circuit board, controlled by field programmable gate array (FPGA), consisted of four parts: an on-board pulser, a bias-tee, a T/R switch and an amplifier. Working with our 217 kHz 16-element air-coupled CMUT array under 100 V DC bias, the front-end circuit board and imaging system could achieve 22.94 dB signal-to-noise ratio (SNR) in burst-echo imaging in air, which could represent the surface morphology and the three-dimensional form factor of the target. In addition, the burst-echo imaging range of our air-coupled CMUT imaging system, which could work between 52 and 273 mm, was discussed. This work suggests good potential for ultrasound imaging and gesture recognition applications. |
---|---|
Bibliography: | SourceType-Other Sources-1 content type line 63 ObjectType-Correspondence-1 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20216128 |