Tibial plateau fractures: three dimensional fracture mapping and morphologic measurements

Purpose The injury mechanisms and classifications of tibial plateau fractures (TPFs) are still controversial. The aim of this study is to show 3D fracture mapping of different types of tibial plateau fractures. Moreover, combined with Schatzker and ten-segment classification, we aimed to analyze the...

Full description

Saved in:
Bibliographic Details
Published inInternational orthopaedics Vol. 46; no. 9; pp. 2153 - 2163
Main Authors Yao, Peifeng, Gong, Maoqi, Shan, Lei, Wang, Dong, He, Yuanming, Wang, Hanzhou, Zhou, Junlin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose The injury mechanisms and classifications of tibial plateau fractures (TPFs) are still controversial. The aim of this study is to show 3D fracture mapping of different types of tibial plateau fractures. Moreover, combined with Schatzker and ten-segment classification, we aimed to analyze the injury frequency and characteristics of different segments. Methods In total, 346 patients with TPFs treated at level I trauma centres from 2017 to 2021 were reviewed. The CT files of the included cases were typed and categorized. 3D reconstruction of TPFs patients’ CT files were performed using software. All fracture lines were superimposed on the standard model by the software to create TPFs 3D fracture mapping. Results This study included 204 male and 142 female patients (average age, 47 years [range, 18 to 83 years]) with a tibial plateau fracture. Using the Schatzker classification, we found 39 type I (11.27%), 103 type II (29.77%), nine type III (2.60%), 71 type IV (20.52%), 52 type V (15.03%), 59 type VI (17.05%) fractures, and 13 others (3.76%). The density areas of fracture lines are mainly located in the ALC and PLC segments (74.3%, 69.1%). In different views, fracture lines of different Schatzker types showed distinct distribution characteristics. Conclusions Schatzker classification combined with 3D fracture mapping provides a new presentation of tibial plateau fracture morphology. According to the 3D fracture mapping, different types of TPFs have distinctly different distribution characteristics of fracture lines. There are significant differences between different types of fracture injury segments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0341-2695
1432-5195
DOI:10.1007/s00264-022-05434-w