Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding

Lens distortion can introduce deviations in visual measurement and positioning. The distortion can be minimized by optimizing the lens and selecting high-quality optical glass, but it cannot be completely eliminated. Most existing correction methods are based on accurate distortion models and stable...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 22; p. 7465
Main Authors Xiong, Pengbo, Wang, Shaokai, Wang, Weibo, Ye, Qixin, Ye, Shujiao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 10.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lens distortion can introduce deviations in visual measurement and positioning. The distortion can be minimized by optimizing the lens and selecting high-quality optical glass, but it cannot be completely eliminated. Most existing correction methods are based on accurate distortion models and stable image characteristics. However, the distortion is usually a mixture of the radial distortion and the tangential distortion of the lens group, which makes it difficult for the mathematical model to accurately fit the non-uniform distortion. This paper proposes a new model-independent lens complex distortion correction method. Taking the horizontal and vertical stripe pattern as the calibration target, the sub-pixel value distribution visualizes the image distortion, and the correction parameters are directly obtained from the pixel distribution. A quantitative evaluation method suitable for model-independent methods is proposed. The method only calculates the error based on the characteristic points of the corrected picture itself. Experiments show that this method can accurately correct distortion with only 8 pictures, with an error of 0.39 pixels, which provides a simple method for complex lens distortion correction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21227465