Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods

A novel sensing system based on the near infrared (NIR) fluorescence resonance energy transfer (FRET) between Mn:CdTe quantum dots (Qdots) and Au nanorods (AuNRs) was established for the detection of human IgG. The NIR-emitting Qdots linked with goat anti-human IgG (Mn:CdTe-Ab1) and AuNRs linked wit...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 24; no. 12; pp. 3693 - 3697
Main Authors Liang, Guo-Xi, Pan, Hong-Cheng, Li, Ye, Jiang, Li-Ping, Zhang, Jian-Rong, Zhu, Jun-Jie
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.08.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel sensing system based on the near infrared (NIR) fluorescence resonance energy transfer (FRET) between Mn:CdTe quantum dots (Qdots) and Au nanorods (AuNRs) was established for the detection of human IgG. The NIR-emitting Qdots linked with goat anti-human IgG (Mn:CdTe-Ab1) and AuNRs linked with rabbit anti-human IgG (AuNRs-Ab2) acted as fluorescence donors and acceptors, respectively. FRET occurred by human IgG with the specific antigen–antibody interaction. And human IgG was detected based on the modulation in FRET efficiency. The calibration graph was linear over the range of 0.05–2.5 μM of human IgG under optimal conditions. The proposed sensing system can decrease the interference of biomolecules in NIR region and increase FRET efficiency in optimizing the spectral overlap of AuNRs with Mn:CdTe Qdots. This method has great potential for multiplex assay with different donor–acceptor pairs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2009.05.008