Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario

We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova and apply it in a study of the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified three-stage burning model and a nonstatic ash stat...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 668; no. 2; pp. 1118 - 1131
Main Authors Townsley, D. M, Calder, A. C, Asida, S. M, Seitenzahl, I. R, Peng, F, Vladimirova, N, Lamb, D. Q, Truran, J. W
Format Journal Article
LanguageEnglish
Published IOP Publishing 20.10.2007
Online AccessGet full text

Cover

Loading…
More Information
Summary:We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova and apply it in a study of the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified three-stage burning model and a nonstatic ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that neither our ADR nor our energy release methods generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia supernovae.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0004-637X
1538-4357
DOI:10.1086/521013