Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence
The nanoscale core/shell heterostructure is a particularly efficient motif to combine the promising properties of plasmonic materials and rare-earth compounds; however, there remain significant challenges in the synthetic control due to the large interfacial energy between these two intrinsically un...
Saved in:
Published in | Nano research Vol. 8; no. 8; pp. 2548 - 2561 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.08.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The nanoscale core/shell heterostructure is a particularly efficient motif to combine the promising properties of plasmonic materials and rare-earth compounds; however, there remain significant challenges in the synthetic control due to the large interfacial energy between these two intrinsically unmatched materials. Herein, we report a synthetic route to grow rare-earth-vanadate shells on gold nanorod (AuNR) cores. After modifying the AuNR surface with oleate through a surfactant exchange, well-packaged rare-earth oxide (e.g., Gd2O3:Eu) shells are grown on AuNRs as a result of the multiple roles of oleate. Furthermore, the composition of the shell has been altered from oxide to vanadate (GdVO4:Eu) using an anion exchange method. Owing to the carefully designed strategy, the AuNR cores maintain the morphology during the synthesis process; thus, the final Au/GdVO4: Eu core/shell NRs exhibit strong absorption bands and high photothermal efficiency. In addition, the Au/GdVO4:Eu NRs exhibit bright Eu^3+ fluorescence with quantum yield as high as -17%; bright Sm^3+ and Dy^3+ fluorescence can also be obtained by changing the lanthanide doping in the oxide formation. Owing to the attractive integration of the plasmonic and fluorescence properties, such core/shell heterostructures will find particular applications in a wide array of areas, from biomedicine to energy. |
---|---|
Bibliography: | 11-5974/O4 The nanoscale core/shell heterostructure is a particularly efficient motif to combine the promising properties of plasmonic materials and rare-earth compounds; however, there remain significant challenges in the synthetic control due to the large interfacial energy between these two intrinsically unmatched materials. Herein, we report a synthetic route to grow rare-earth-vanadate shells on gold nanorod (AuNR) cores. After modifying the AuNR surface with oleate through a surfactant exchange, well-packaged rare-earth oxide (e.g., Gd2O3:Eu) shells are grown on AuNRs as a result of the multiple roles of oleate. Furthermore, the composition of the shell has been altered from oxide to vanadate (GdVO4:Eu) using an anion exchange method. Owing to the carefully designed strategy, the AuNR cores maintain the morphology during the synthesis process; thus, the final Au/GdVO4: Eu core/shell NRs exhibit strong absorption bands and high photothermal efficiency. In addition, the Au/GdVO4:Eu NRs exhibit bright Eu^3+ fluorescence with quantum yield as high as -17%; bright Sm^3+ and Dy^3+ fluorescence can also be obtained by changing the lanthanide doping in the oxide formation. Owing to the attractive integration of the plasmonic and fluorescence properties, such core/shell heterostructures will find particular applications in a wide array of areas, from biomedicine to energy. gold nanorods,rare-earth vanadates,core/shell heterostructures,ion exchange,fluorescence ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-015-0761-7 |