Mutation in ε-Sarcoglycan Induces a Myoclonus-Dystonia Syndrome-Like Movement Disorder in Mice

Myoclonus dystonia syndrome (MDS) is an inherited movement disorder, and most MDS-related mutations have so far been found in the ε-sarcoglycan (SGCE) coding gene. By generating SGCE-knockout (KO) and human 237 C > T mutation knock-in (KI) mice, we showed here that both KO and KI mice exerted typ...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience bulletin Vol. 37; no. 3; pp. 311 - 322
Main Authors Li, Jiao, Liu, Yiqiong, Li, Qin, Huang, Xiaolin, Zhou, Dingxi, Xu, Hanjian, Zhao, Feng, Mi, Xiaoxiao, Wang, Ruoxu, Jia, Fan, Xu, Fuqiang, Yang, Jing, Liu, Dong, Deng, Xuliang, Zhang, Yan
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Myoclonus dystonia syndrome (MDS) is an inherited movement disorder, and most MDS-related mutations have so far been found in the ε-sarcoglycan (SGCE) coding gene. By generating SGCE-knockout (KO) and human 237 C > T mutation knock-in (KI) mice, we showed here that both KO and KI mice exerted typical movement defects similar to those of MDS patients. SGCE promoted filopodia development in vitro and inhibited excitatory synapse formation both in vivo and in vitro . Loss of function of SGCE leading to excessive excitatory synapses that may ultimately contribute to MDS pathology. Indeed, using a zebrafish MDS model, we found that among 1700 screened chemical compounds, Vigabatrin was the most potent in readily reversing MDS symptoms of mouse disease models. Our study strengthens the notion that mutations of SGCE lead to MDS and most likely, SGCE functions to brake synaptogenesis in the CNS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1673-7067
1995-8218
DOI:10.1007/s12264-020-00612-5