Decentralized Robust Adaptive Control for the Multiagent System Consensus Problem Using Neural Networks
A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capabilit...
Saved in:
Published in | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 39; no. 3; pp. 636 - 647 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method. |
---|---|
AbstractList | A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: Agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method. A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: Agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method.A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: Agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method. |
Author | Zeng-Guang Hou Min Tan Long Cheng |
Author_xml | – sequence: 1 givenname: Zeng-Guang surname: Hou fullname: Hou, Zeng-Guang email: hou@compsys.ia.ac.cn organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. hou@compsys.ia.ac.cn – sequence: 2 givenname: Long surname: Cheng fullname: Cheng, Long – sequence: 3 givenname: Min surname: Tan fullname: Tan, Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19174350$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu2zAQRYkiQZM4_YEWKLhqVnKGFPXgMnGegPNA7awFShq5bGXRJakEzteHip0G6CIbDsE593Iw94DsdKZDQr4yGDMG8ng-u5mcjjlAPhxZzuAT2WdSsAiE5DvhDnkcCcHkHjlw7jcASJDZZ7LHJMtEnMA-WZxhhZ23qtXPWNOfpuydpye1Wnn9iHRiQs-0tDGW-l9Ib_rWa7UICjpbO4_LgXDYud7Re2vKNrw8ON0t6C32wTQU_2TsH3dIdhvVOvyyrSPycHE-n1xF07vL68nJNKqESH0kBS-zimW14gkyAZwDSxoJMSZYQ5rwpsxkCSLOVV3VgjVSIIuTpGwC2AgWj8jRxndlzd8enS-W2lXYtqpD07siT2UuZByngfzxIZlmjAdrHsDvW7Avl1gXK6uXyq6LtyUGgG-AyhrnLDbvCBRDUsVrUsWQVLFNKojy_0SV9srrYeFKtx9Lv22kGhH__SWyFHiY5gUntaCp |
CODEN | ITSCFI |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2915160 crossref_primary_10_1109_ACCESS_2024_3456430 crossref_primary_10_1109_TCYB_2019_2917078 crossref_primary_10_1109_TNN_2010_2050601 crossref_primary_10_1155_2015_415734 crossref_primary_10_1371_journal_pone_0178330 crossref_primary_10_1016_j_jfranklin_2021_02_022 crossref_primary_10_1080_00207721_2018_1479464 crossref_primary_10_1016_j_jfranklin_2020_08_044 crossref_primary_10_1016_j_cnsns_2018_07_016 crossref_primary_10_1016_j_neucom_2016_01_070 crossref_primary_10_1109_ACCESS_2020_3030535 crossref_primary_10_3389_frobt_2020_538347 crossref_primary_10_1016_j_automatica_2011_03_014 crossref_primary_10_1049_iet_cta_2011_0011 crossref_primary_10_3390_e18010029 crossref_primary_10_1109_TSMC_2017_2732679 crossref_primary_10_1002_acs_2682 crossref_primary_10_1109_TNNLS_2017_2764495 crossref_primary_10_1109_TFUZZ_2022_3182746 crossref_primary_10_1109_ACCESS_2021_3136892 crossref_primary_10_1016_j_neucom_2016_08_052 crossref_primary_10_1016_j_chaos_2024_115344 crossref_primary_10_1016_j_ins_2017_04_036 crossref_primary_10_1080_00207721_2013_793781 crossref_primary_10_1080_00207721_2013_837544 crossref_primary_10_1115_1_4035092 crossref_primary_10_3390_app10051732 crossref_primary_10_1109_TNNLS_2016_2636323 crossref_primary_10_1007_s00500_021_06430_9 crossref_primary_10_1108_AA_11_2015_107 crossref_primary_10_1007_s11071_018_4699_7 crossref_primary_10_1049_iet_cta_2014_0523 crossref_primary_10_1109_TCNS_2016_2578039 crossref_primary_10_1177_0959651811398853 crossref_primary_10_1155_2014_519524 crossref_primary_10_1155_2013_908180 crossref_primary_10_1155_2013_394137 crossref_primary_10_1016_j_neucom_2013_01_010 crossref_primary_10_1016_j_neucom_2017_03_066 crossref_primary_10_1016_j_neucom_2017_02_031 crossref_primary_10_1002_rnc_4852 crossref_primary_10_1016_j_ins_2017_03_013 crossref_primary_10_1080_00207721_2013_849770 crossref_primary_10_1109_TSMC_2015_2486751 crossref_primary_10_1016_j_neucom_2015_06_066 crossref_primary_10_1016_j_neucom_2013_02_038 crossref_primary_10_1115_1_4028687 crossref_primary_10_1109_TCYB_2019_2933436 crossref_primary_10_1007_s11071_022_07505_4 crossref_primary_10_1080_00207721_2020_1803441 crossref_primary_10_1109_TCYB_2020_3029045 crossref_primary_10_1109_TCYB_2019_2959908 crossref_primary_10_1109_TFUZZ_2016_2554151 crossref_primary_10_1016_j_ifacol_2021_08_480 crossref_primary_10_1016_j_sysconle_2011_07_004 crossref_primary_10_1016_j_ast_2020_105986 crossref_primary_10_1109_TNNLS_2013_2293499 crossref_primary_10_1109_TCYB_2018_2801345 crossref_primary_10_1007_s11432_015_5504_6 crossref_primary_10_1002_mma_7806 crossref_primary_10_1016_j_neucom_2019_07_067 crossref_primary_10_1080_00207721_2015_1090040 crossref_primary_10_1016_j_conengprac_2022_105184 crossref_primary_10_1002_rnc_1647 crossref_primary_10_1016_j_neucom_2020_01_108 crossref_primary_10_1109_TNNLS_2021_3126531 crossref_primary_10_1109_TNNLS_2017_2673020 crossref_primary_10_1016_j_automatica_2012_05_068 crossref_primary_10_1109_TCYB_2016_2556002 crossref_primary_10_1016_j_neucom_2016_06_013 crossref_primary_10_1080_00207179_2019_1613560 crossref_primary_10_1016_j_neunet_2019_09_028 crossref_primary_10_1002_asjc_1104 crossref_primary_10_1007_s12555_017_0231_y crossref_primary_10_1109_TAC_2016_2535102 crossref_primary_10_1007_s11071_015_2476_4 crossref_primary_10_1016_j_oceaneng_2023_113864 crossref_primary_10_1016_j_amc_2023_128522 crossref_primary_10_1016_j_oceaneng_2023_114950 crossref_primary_10_1080_00207179_2017_1300685 crossref_primary_10_1109_TCYB_2021_3118782 crossref_primary_10_1109_TCYB_2016_2623898 crossref_primary_10_1109_TFUZZ_2019_2893301 crossref_primary_10_1080_00207721_2016_1139760 crossref_primary_10_1016_j_neucom_2013_12_064 crossref_primary_10_1007_s00521_023_08646_2 crossref_primary_10_1002_asjc_2423 crossref_primary_10_1016_S1874_1029_11_60298_X crossref_primary_10_1016_j_automatica_2010_08_008 crossref_primary_10_1016_j_amc_2013_08_059 crossref_primary_10_1109_TCYB_2021_3140104 crossref_primary_10_1007_s11431_023_2684_6 crossref_primary_10_1016_j_jfranklin_2018_01_030 crossref_primary_10_1080_00207721_2024_2304133 crossref_primary_10_1016_j_neucom_2020_08_051 crossref_primary_10_1080_00207179_2023_2285408 crossref_primary_10_1016_j_jfranklin_2021_01_028 crossref_primary_10_1080_00207721_2014_911384 crossref_primary_10_1109_TNSE_2021_3114410 crossref_primary_10_1109_TSMC_2018_2813399 crossref_primary_10_1016_j_automatica_2014_02_028 crossref_primary_10_1109_TNNLS_2023_3238336 crossref_primary_10_1016_j_sysconle_2015_10_007 crossref_primary_10_1080_00207721_2013_871367 crossref_primary_10_1016_j_automatica_2014_07_020 crossref_primary_10_1109_TAC_2021_3062594 crossref_primary_10_1109_TCYB_2017_2786318 crossref_primary_10_1109_TCNS_2019_2937202 crossref_primary_10_3724_SP_J_1004_2012_00357 crossref_primary_10_1109_TFUZZ_2022_3199573 crossref_primary_10_1016_j_neucom_2021_10_059 crossref_primary_10_1016_j_neucom_2016_06_064 crossref_primary_10_1016_j_neucom_2014_09_037 crossref_primary_10_1007_s40815_019_00769_w crossref_primary_10_1109_TCNS_2016_2570016 crossref_primary_10_1109_TSMC_2023_3259423 crossref_primary_10_3390_s22072748 crossref_primary_10_1109_TNSE_2023_3305969 crossref_primary_10_1016_j_oceaneng_2023_114545 crossref_primary_10_1109_TETCI_2023_3296448 crossref_primary_10_1016_j_neucom_2016_05_029 crossref_primary_10_1109_TFUZZ_2018_2864940 crossref_primary_10_1080_00207721_2014_966281 crossref_primary_10_1016_j_nahs_2019_100833 crossref_primary_10_1109_TIV_2024_3372652 crossref_primary_10_1109_TASE_2023_3348469 crossref_primary_10_1007_s10846_018_0843_3 crossref_primary_10_1109_TIE_2011_2160140 crossref_primary_10_1109_TNNLS_2018_2803059 crossref_primary_10_1109_TRO_2024_3463476 crossref_primary_10_1109_TITS_2023_3240135 crossref_primary_10_1109_TFUZZ_2019_2893339 crossref_primary_10_1109_TNNLS_2021_3104839 crossref_primary_10_1109_ACCESS_2019_2950428 crossref_primary_10_1002_asjc_1493 crossref_primary_10_52547_joc_15_4_25 crossref_primary_10_52547_joc_15_3_55 crossref_primary_10_1007_s00521_017_3178_2 crossref_primary_10_1080_00207721_2012_724096 crossref_primary_10_1177_01423312211043065 crossref_primary_10_1109_TIE_2017_2756594 crossref_primary_10_1049_iet_cta_2018_5630 crossref_primary_10_1109_TII_2016_2612646 crossref_primary_10_1109_TNNLS_2020_2991015 crossref_primary_10_1007_s40815_020_00943_5 crossref_primary_10_1109_TCYB_2018_2853623 crossref_primary_10_1109_TFUZZ_2024_3418577 crossref_primary_10_1109_TCYB_2014_2350335 crossref_primary_10_1155_2012_530759 crossref_primary_10_1109_TCST_2023_3277595 crossref_primary_10_1007_s00521_014_1668_z crossref_primary_10_1016_j_neucom_2016_05_044 crossref_primary_10_1109_TFUZZ_2022_3154433 crossref_primary_10_1109_TCSII_2018_2882538 crossref_primary_10_1109_TCYB_2015_2388582 crossref_primary_10_1109_MSMC_2024_3358065 crossref_primary_10_1002_rnc_4885 crossref_primary_10_1007_s12541_018_0021_3 crossref_primary_10_1016_j_automatica_2015_01_043 crossref_primary_10_1016_j_jfranklin_2022_08_008 crossref_primary_10_3390_electronics13030524 crossref_primary_10_1007_s12559_022_10082_8 crossref_primary_10_1049_iet_cta_2015_0627 crossref_primary_10_1016_j_jfranklin_2014_05_011 crossref_primary_10_1016_j_matcom_2024_05_015 crossref_primary_10_1002_rnc_6817 crossref_primary_10_1016_j_ins_2020_08_013 crossref_primary_10_1109_TCNS_2022_3233101 crossref_primary_10_1007_s12555_013_0325_0 crossref_primary_10_1016_j_arcontrol_2021_10_014 crossref_primary_10_1155_2015_941697 crossref_primary_10_1049_iet_cta_2015_0638 crossref_primary_10_1109_TCYB_2021_3110645 crossref_primary_10_1109_TNNLS_2016_2577342 crossref_primary_10_1002_rnc_3310 crossref_primary_10_1109_TCNS_2023_3272848 crossref_primary_10_1016_j_neucom_2021_02_039 crossref_primary_10_1049_iet_cta_2018_5802 crossref_primary_10_1109_TSMCB_2011_2167679 crossref_primary_10_1016_j_jfranklin_2017_01_021 crossref_primary_10_1177_0142331216663824 crossref_primary_10_1109_TCYB_2015_2494738 crossref_primary_10_1109_TAC_2013_2270869 crossref_primary_10_1109_TNNLS_2013_2293507 crossref_primary_10_1007_s10846_023_01987_z crossref_primary_10_1002_rnc_3584 crossref_primary_10_1109_TNNLS_2023_3243627 crossref_primary_10_3182_20110828_6_IT_1002_02835 crossref_primary_10_1016_j_neucom_2015_10_090 crossref_primary_10_1016_j_neucom_2021_03_057 crossref_primary_10_1002_rnc_7801 crossref_primary_10_1016_j_jfranklin_2019_05_031 crossref_primary_10_1109_TCSI_2010_2097691 crossref_primary_10_1016_j_automatica_2012_05_008 crossref_primary_10_1109_ACCESS_2021_3137205 crossref_primary_10_1007_s40815_019_00710_1 crossref_primary_10_1016_j_jfranklin_2021_08_033 crossref_primary_10_1109_TIE_2023_3335448 crossref_primary_10_1016_j_neucom_2012_12_033 crossref_primary_10_1109_TCYB_2018_2883335 crossref_primary_10_1016_j_neucom_2017_12_052 crossref_primary_10_1016_j_isatra_2018_12_051 crossref_primary_10_1016_j_oceaneng_2023_116313 crossref_primary_10_1080_00207179_2017_1305510 crossref_primary_10_1016_j_automatica_2013_03_007 crossref_primary_10_1007_s12555_022_0383_2 crossref_primary_10_1080_00207721_2014_960906 crossref_primary_10_1016_j_ins_2015_04_025 crossref_primary_10_1016_j_ins_2024_120122 crossref_primary_10_1016_j_isatra_2017_11_008 crossref_primary_10_1007_s12555_017_0641_x crossref_primary_10_1080_00207721_2018_1542464 crossref_primary_10_1016_j_oceaneng_2022_110966 crossref_primary_10_1002_rnc_4054 crossref_primary_10_1109_TSMC_2016_2524063 crossref_primary_10_1016_j_ins_2014_02_148 crossref_primary_10_1016_j_automatica_2016_01_004 crossref_primary_10_1109_TCYB_2023_3312696 crossref_primary_10_1080_00207721_2021_1954720 crossref_primary_10_1016_j_neucom_2019_01_101 crossref_primary_10_1155_2014_135690 crossref_primary_10_1109_TSMC_2019_2950114 crossref_primary_10_1109_TSMCB_2010_2095497 crossref_primary_10_1007_s11071_014_1483_1 crossref_primary_10_1002_asjc_427 crossref_primary_10_1007_s12555_023_0486_4 crossref_primary_10_1016_j_jfranklin_2019_01_020 crossref_primary_10_1049_iet_cta_2017_0188 crossref_primary_10_1109_TSMCB_2012_2192270 crossref_primary_10_1109_TCYB_2015_2509482 crossref_primary_10_1109_TCYB_2014_2326549 crossref_primary_10_1016_j_jfranklin_2017_05_034 crossref_primary_10_1016_j_oceaneng_2021_110104 crossref_primary_10_1109_TCYB_2021_3123788 crossref_primary_10_1109_ACCESS_2020_3015957 crossref_primary_10_1016_j_jfranklin_2016_10_034 crossref_primary_10_1007_s13042_017_0654_z crossref_primary_10_1109_TSMC_2017_2660883 crossref_primary_10_1109_TCYB_2020_3035283 crossref_primary_10_1109_TFUZZ_2017_2765627 crossref_primary_10_1109_TCYB_2017_2737652 crossref_primary_10_1155_2018_1934174 crossref_primary_10_1109_TSMCB_2012_2207718 crossref_primary_10_1007_s10846_017_0554_1 crossref_primary_10_1109_TEC_2014_2359934 crossref_primary_10_1016_j_nahs_2015_10_005 crossref_primary_10_1007_s11071_017_3833_2 crossref_primary_10_1016_j_isatra_2017_04_002 crossref_primary_10_1109_TCST_2018_2884226 crossref_primary_10_1016_j_automatica_2019_108559 crossref_primary_10_1080_00207721_2014_886135 crossref_primary_10_1007_s11071_012_0533_9 crossref_primary_10_1016_j_neucom_2015_10_114 crossref_primary_10_1109_TSMC_2016_2606159 crossref_primary_10_1155_2015_292437 crossref_primary_10_1016_j_oceaneng_2021_109545 crossref_primary_10_1109_TSMC_2015_2470635 crossref_primary_10_1080_00207721_2018_1453953 crossref_primary_10_1109_TFUZZ_2019_2908771 crossref_primary_10_1007_s11071_013_0951_3 crossref_primary_10_1007_s00034_013_9687_z crossref_primary_10_1080_00207721_2011_598960 crossref_primary_10_1016_j_isatra_2017_12_011 crossref_primary_10_1177_0954406216646802 crossref_primary_10_1016_j_oceaneng_2024_117950 crossref_primary_10_1088_1674_1056_19_8_080508 crossref_primary_10_1109_TNNLS_2021_3053112 crossref_primary_10_3934_math_2021698 crossref_primary_10_1177_0142331220933441 crossref_primary_10_1177_0142331218823875 crossref_primary_10_1016_j_ins_2015_03_007 crossref_primary_10_1177_1687814015599926 crossref_primary_10_1080_00207721_2016_1193257 crossref_primary_10_1109_TNNLS_2012_2196710 crossref_primary_10_1109_TFUZZ_2015_2486817 crossref_primary_10_1109_TII_2021_3050768 crossref_primary_10_1016_j_neucom_2015_10_013 crossref_primary_10_1109_TFUZZ_2021_3094716 crossref_primary_10_1016_j_amc_2017_12_038 crossref_primary_10_1016_j_ins_2018_08_025 crossref_primary_10_1002_rnc_6576 crossref_primary_10_1016_j_jfranklin_2022_07_026 crossref_primary_10_1007_s00521_015_2117_3 crossref_primary_10_1109_TNNLS_2022_3214681 crossref_primary_10_1080_00207721_2016_1146973 crossref_primary_10_1109_MCS_2014_2350571 crossref_primary_10_1016_j_jfranklin_2016_02_011 crossref_primary_10_1109_TCNS_2023_3337671 crossref_primary_10_1016_j_neucom_2021_01_069 crossref_primary_10_1016_j_sysconle_2019_104528 crossref_primary_10_1109_TSMC_2021_3062077 crossref_primary_10_1016_j_jfranklin_2015_09_008 crossref_primary_10_1109_TNNLS_2021_3117364 crossref_primary_10_1007_s11424_018_7269_7 crossref_primary_10_1016_j_jfranklin_2019_07_019 crossref_primary_10_1109_TFUZZ_2010_2046329 crossref_primary_10_1109_TSMC_2017_2768101 crossref_primary_10_1016_j_cnsns_2023_107319 crossref_primary_10_1109_TNNLS_2013_2238554 crossref_primary_10_1016_j_isatra_2019_02_030 crossref_primary_10_1109_TCYB_2019_2951151 crossref_primary_10_1080_00207179_2013_790077 crossref_primary_10_1007_s10462_021_10097_x crossref_primary_10_1080_00207721_2024_2346754 crossref_primary_10_1109_ACCESS_2018_2869392 crossref_primary_10_1007_s11071_018_4684_1 crossref_primary_10_1002_rnc_2811 crossref_primary_10_1016_j_jfranklin_2018_12_003 crossref_primary_10_1080_00207721_2014_980367 crossref_primary_10_1080_00207721_2013_792973 crossref_primary_10_1109_TNNLS_2014_2359955 crossref_primary_10_1109_TCYB_2016_2573837 crossref_primary_10_1080_00207721_2016_1193261 crossref_primary_10_1177_09596518241255161 crossref_primary_10_1109_TCYB_2018_2822258 crossref_primary_10_1109_TCYB_2015_2402192 crossref_primary_10_1109_ACCESS_2018_2831912 crossref_primary_10_1109_TFUZZ_2019_2936359 crossref_primary_10_1109_TFUZZ_2017_2723346 crossref_primary_10_1109_TCYB_2016_2608499 crossref_primary_10_1541_ieejeiss_133_1076 crossref_primary_10_20965_jaciii_2021_p0974 crossref_primary_10_1016_j_jfranklin_2022_06_029 crossref_primary_10_1080_00207721_2015_1056274 crossref_primary_10_1109_TFUZZ_2023_3309706 crossref_primary_10_1016_j_sysconle_2013_06_011 crossref_primary_10_1002_acs_2866 crossref_primary_10_1007_s00521_016_2614_z crossref_primary_10_1109_TSMC_2017_2702705 crossref_primary_10_1016_j_jfranklin_2022_06_013 crossref_primary_10_1109_TNNLS_2015_2464314 crossref_primary_10_1080_00207720903572463 crossref_primary_10_1016_j_eswa_2013_07_072 crossref_primary_10_1109_TIE_2017_2677330 crossref_primary_10_1080_00207721_2014_906681 crossref_primary_10_1016_j_sysconle_2020_104804 crossref_primary_10_1109_TCYB_2014_2345791 crossref_primary_10_1080_00207721_2011_652221 crossref_primary_10_1002_ecj_11808 crossref_primary_10_1049_iet_cta_2014_1319 crossref_primary_10_1080_00207721_2024_2328057 crossref_primary_10_1049_iet_its_2019_0221 crossref_primary_10_1080_00207721_2012_670296 crossref_primary_10_1016_j_neucom_2015_06_012 crossref_primary_10_3182_20140824_6_ZA_1003_00344 crossref_primary_10_1109_TCYB_2023_3259967 crossref_primary_10_1049_iet_cta_2012_0048 crossref_primary_10_1109_TSMC_2019_2944275 crossref_primary_10_1049_iet_cta_2015_0187 crossref_primary_10_1016_j_neucom_2019_04_018 crossref_primary_10_1080_00207721_2017_1324923 crossref_primary_10_1109_ACCESS_2019_2947513 crossref_primary_10_1016_j_automatica_2018_02_010 crossref_primary_10_1109_TNNLS_2014_2302477 crossref_primary_10_1109_TCYB_2016_2629268 crossref_primary_10_1109_TITS_2024_3521961 crossref_primary_10_1007_s10514_018_9700_2 crossref_primary_10_1007_s12555_013_0518_6 crossref_primary_10_1109_TAC_2016_2610325 crossref_primary_10_1016_j_neucom_2015_12_117 crossref_primary_10_1109_TCYB_2018_2789917 crossref_primary_10_1109_TFUZZ_2022_3191087 crossref_primary_10_1109_TCYB_2014_2301555 crossref_primary_10_3390_a12050097 crossref_primary_10_1109_TNNLS_2021_3107623 crossref_primary_10_1016_j_isatra_2018_01_023 crossref_primary_10_1002_rnc_6263 crossref_primary_10_1002_acs_2657 crossref_primary_10_1109_TSMC_2023_3336200 crossref_primary_10_1109_TFUZZ_2020_3008779 crossref_primary_10_1109_TCYB_2015_2452217 crossref_primary_10_1002_rnc_5083 crossref_primary_10_1080_00207721_2013_798445 crossref_primary_10_1109_TFUZZ_2020_3021714 crossref_primary_10_1016_j_automatica_2014_10_015 crossref_primary_10_1038_s41598_024_73959_8 crossref_primary_10_1016_j_oceaneng_2020_107941 crossref_primary_10_1016_j_ins_2016_08_064 crossref_primary_10_1049_iet_cta_2018_6127 crossref_primary_10_1155_2013_283196 crossref_primary_10_1016_j_neucom_2019_05_074 crossref_primary_10_1109_TSG_2024_3370912 crossref_primary_10_1016_j_jfranklin_2016_04_002 crossref_primary_10_1016_j_neucom_2014_11_035 crossref_primary_10_1016_j_neunet_2018_05_005 crossref_primary_10_1016_j_oceaneng_2022_111670 crossref_primary_10_1016_j_ejcon_2024_101058 crossref_primary_10_1002_rnc_1829 crossref_primary_10_1109_TSMC_2017_2734799 crossref_primary_10_1049_iet_cta_2018_5391 crossref_primary_10_1109_ACCESS_2018_2820813 crossref_primary_10_1016_j_neucom_2015_12_014 crossref_primary_10_1177_14613484211032758 crossref_primary_10_1038_s41598_022_05663_4 crossref_primary_10_1016_j_automatica_2013_02_004 |
Cites_doi | 10.1109/CDC.2005.1583238 10.1016/j.jpdc.2006.08.010 10.1109/TAC.2004.834113 10.1109/TNN.2004.826130 10.1016/j.sysconle.2006.06.005 10.1109/ACC.2005.1470240 10.1137/060657029 10.1016/j.automatica.2007.07.022 10.1103/PhysRevLett.75.1226 10.1002/0471781819 10.1002/rnc.1144 10.1109/TAC.2008.924961 10.1109/TAC.2003.812781 10.1109/72.80202 10.1109/ACC.2005.1470239 10.1109/ISIC.2008.4635941 10.1007/978-1-4613-0163-9 10.2514/1.9287 10.1109/TAC.2005.846556 10.1109/TAC.2005.864190 10.1109/TAC.2004.834433 10.1109/JPROC.2006.887293 10.1109/CDC.2005.1583486 10.1109/TAC.2004.841888 10.1016/j.automatica.2006.02.013 10.1016/j.sysconle.2004.02.022 10.1142/3774 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TSMCB.2008.2007810 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1941-0492 |
EndPage | 647 |
ExternalDocumentID | 19174350 10_1109_TSMCB_2008_2007810 4760250 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS RXW TAE TAF VH1 VJK AAYXX CITATION NPM 7X8 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c446t-942b7c17da25e14022015f903e5ed0652fb79b0438adcd41f94e1355bf201f413 |
IEDL.DBID | RIE |
ISSN | 1083-4419 1941-0492 |
IngestDate | Fri Jul 11 08:13:51 EDT 2025 Thu Jul 10 17:39:24 EDT 2025 Mon Jul 21 05:45:12 EDT 2025 Tue Jul 01 02:00:42 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Aug 26 16:47:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-942b7c17da25e14022015f903e5ed0652fb79b0438adcd41f94e1355bf201f413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 19174350 |
PQID | 67121352 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_67121352 crossref_citationtrail_10_1109_TSMCB_2008_2007810 ieee_primary_4760250 proquest_miscellaneous_869849336 crossref_primary_10_1109_TSMCB_2008_2007810 pubmed_primary_19174350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics |
PublicationTitleAbbrev | TSMCB |
PublicationTitleAlternate | IEEE Trans Syst Man Cybern B Cybern |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref31 ref10 ref2 ref1 ref17 ref16 ref19 ref18 xiao (ref11) 2007; 67 ref26 polycarpou (ref23) 1991 ref20 ref22 lewis (ref24) 1998 godsil (ref30) 2001 ref28 ref27 ref29 ref8 ref7 schilling (ref32) 1998 ref9 ref4 ref3 ref6 ref5 ge (ref25) 1998 cheng (ref21) 2008 |
References_xml | – ident: ref28 doi: 10.1109/CDC.2005.1583238 – volume: 67 start-page: 33 year: 2007 ident: ref11 article-title: distributed average consensus with least-mean-square deviation publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2006.08.010 – ident: ref7 doi: 10.1109/TAC.2004.834113 – ident: ref31 doi: 10.1109/TNN.2004.826130 – ident: ref14 doi: 10.1016/j.sysconle.2006.06.005 – ident: ref13 doi: 10.1109/ACC.2005.1470240 – ident: ref12 doi: 10.1137/060657029 – ident: ref15 doi: 10.1016/j.automatica.2007.07.022 – ident: ref5 doi: 10.1103/PhysRevLett.75.1226 – ident: ref26 doi: 10.1002/0471781819 – ident: ref16 doi: 10.1002/rnc.1144 – ident: ref17 doi: 10.1109/TAC.2008.924961 – ident: ref6 doi: 10.1109/TAC.2003.812781 – ident: ref22 doi: 10.1109/72.80202 – ident: ref18 doi: 10.1109/ACC.2005.1470239 – ident: ref20 doi: 10.1109/ISIC.2008.4635941 – ident: ref4 doi: 10.1109/CDC.2005.1583238 – year: 2001 ident: ref30 publication-title: Algebraic Graph Theory doi: 10.1007/978-1-4613-0163-9 – ident: ref1 doi: 10.2514/1.9287 – year: 1991 ident: ref23 publication-title: Identification and control of nonlinear systems using neural network models Design and stability analysis – ident: ref9 doi: 10.1109/TAC.2005.846556 – ident: ref2 doi: 10.1109/TAC.2005.864190 – ident: ref3 doi: 10.1109/TAC.2004.834433 – ident: ref19 doi: 10.1109/JPROC.2006.887293 – year: 2008 ident: ref21 article-title: decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics publication-title: Proc IEEE Int Conf Syst Man Cybern – ident: ref27 doi: 10.1109/CDC.2005.1583486 – ident: ref8 doi: 10.1109/TAC.2004.841888 – ident: ref10 doi: 10.1016/j.automatica.2006.02.013 – year: 1998 ident: ref24 publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems – ident: ref29 doi: 10.1016/j.sysconle.2004.02.022 – year: 1998 ident: ref25 publication-title: Adaptive Neural Network Control of Robotic Manipulators doi: 10.1142/3774 – year: 1998 ident: ref32 publication-title: Fundamentals of Robotics Analysis and Control |
SSID | ssj0009097 |
Score | 2.4226131 |
Snippet | A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 636 |
SubjectTerms | Adaptive Adaptive control Approximation Communication switching Computer simulation consensus Cybernetics Distributed control Disturbances Dynamical systems Dynamics Mathematical analysis multiagent system Multiagent systems Network topology Neural networks robust Robust control Robustness Uncertainty Vehicle dynamics |
Title | Decentralized Robust Adaptive Control for the Multiagent System Consensus Problem Using Neural Networks |
URI | https://ieeexplore.ieee.org/document/4760250 https://www.ncbi.nlm.nih.gov/pubmed/19174350 https://www.proquest.com/docview/67121352 https://www.proquest.com/docview/869849336 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLaAUzm0BUqbPufQQyvIksdkkjnCtghVWlTxkLhFmReqWu2iJrnw62vPzC6oKqi3HJxkInviz2P7M8BHw7mps9qlutIlBSguVU7jxmuka6yQuvHV7rNTcXLJv11VV2uwv-qFsdb64jM7oUufyzcLPdJR2QGvBbnsdVjHwC30at0R7GZhkApCihRdvFw2yGTy4OJ8Nj0KZZN0MtfkfvybJCxO7fb3_JEfsPIw1vQ-5_gZzJarDaUmPyfjoCb69i8ix__9nOfwNIJPdhisZQvW7HwbNu9REm7DVtzsPfsUGak_78D1FxuLOH_cWsPOFmrsB3Zouhv6WbJpKHdniH8Z4knmm3o76tligRCdJHqaqdGz72GADfOlCoyoQXBBp6EWvX8Bl8dfL6YnaZzQkGoMI4dU8kLVOq9NV1QWQ7UC4UTlZFbayhoEN4VTtVSUbOyMNjx3ktscEY5yKOjQf-7Cxnwxt6-AiUrzTnb4PBQqlehyVSK6yo1SUphcJZAv9dTqSF9OUzR-tT6MyWTr1RzGakY1J7C3uucmkHc8Kr1DOlpJRvUk8GFpDi1uPcqndHO7GPtW1MSHVxUJsAckGiEbLstSJPAyGNLdOqL9vf73W9_Ak5C3ovOet7Ax_B7tO4Q_g3rv7f4PEX3-OA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKOQCHQlsKaYHOgQMIss1jMskcy0K1QHeFYCv1FmVeCIF2K5Jc-utrz2S3FaKIWw5OMpHt-Jux_RngpeHclEnpYl3onDYoLlZOo-NV0lVWSF35avfpTEzO-Kfz4nwD3q57Yay1vvjMjujS5_LNUvd0VHbES0Eh-w7cxbhfZKFb65piNwmjVBBUxBjk5apFJpFH82_T8btQOElnc1XqB8BJQuPUcH8jIvkRK7ejTR91Th7CdLXeUGzyc9R3aqQv_6By_N8PegRbA_xkx8FetmHDLnbgwQ1Swh3YHty9Za8GTurXu_D9vR3KOH9cWsO-LlXfduzYNBf0u2TjUPDOEAEzRJTMt_U21LXFAiU6SbQ0VaNlX8IIG-aLFRiRg-CCZqEavX0MZycf5uNJPMxoiDVuJLtY8kyVOi1NkxUWN2sZAorCySS3hTUIbzKnSqko3dgYbXjqJLcpYhzlUNBhBN2DzcVyYZ8CE4XmjWzweSiUK9GkKkd8lRqlpDCpiiBd6anWA4E5zdH4VfuNTCJrr-YwWHNQcwRv1vdcBPqOf0rvko7WkoN6IjhcmUONzkcZlWZhl31bi5IY8YosAnaLRCVkxWWeiwieBEO6Xsdgf_t_f-sh3JvMp6f16cfZ5wO4H7JYdPrzDDa73719jmCoUy-8D1wBe0cBkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+Robust+Adaptive+Control+for+the+Multiagent+System+Consensus+Problem+Using+Neural+Networks&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Hou%2C+Zeng-Guang&rft.au=Cheng%2C+Long&rft.au=Tan%2C+Min&rft.date=2009-06-01&rft.issn=1083-4419&rft.volume=39&rft.issue=3&rft_id=info:doi/10.1109%2FTSMCB.2008.2007810&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon |