Decentralized Robust Adaptive Control for the Multiagent System Consensus Problem Using Neural Networks

A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capabilit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 39; no. 3; pp. 636 - 647
Main Authors Hou, Zeng-Guang, Cheng, Long, Tan, Min
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method.
AbstractList A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: Agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method.
A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: Agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method.A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: Agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method.
Author Zeng-Guang Hou
Min Tan
Long Cheng
Author_xml – sequence: 1
  givenname: Zeng-Guang
  surname: Hou
  fullname: Hou, Zeng-Guang
  email: hou@compsys.ia.ac.cn
  organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. hou@compsys.ia.ac.cn
– sequence: 2
  givenname: Long
  surname: Cheng
  fullname: Cheng, Long
– sequence: 3
  givenname: Min
  surname: Tan
  fullname: Tan, Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19174350$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu2zAQRYkiQZM4_YEWKLhqVnKGFPXgMnGegPNA7awFShq5bGXRJakEzteHip0G6CIbDsE593Iw94DsdKZDQr4yGDMG8ng-u5mcjjlAPhxZzuAT2WdSsAiE5DvhDnkcCcHkHjlw7jcASJDZZ7LHJMtEnMA-WZxhhZ23qtXPWNOfpuydpye1Wnn9iHRiQs-0tDGW-l9Ib_rWa7UICjpbO4_LgXDYud7Re2vKNrw8ON0t6C32wTQU_2TsH3dIdhvVOvyyrSPycHE-n1xF07vL68nJNKqESH0kBS-zimW14gkyAZwDSxoJMSZYQ5rwpsxkCSLOVV3VgjVSIIuTpGwC2AgWj8jRxndlzd8enS-W2lXYtqpD07siT2UuZByngfzxIZlmjAdrHsDvW7Avl1gXK6uXyq6LtyUGgG-AyhrnLDbvCBRDUsVrUsWQVLFNKojy_0SV9srrYeFKtx9Lv22kGhH__SWyFHiY5gUntaCp
CODEN ITSCFI
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2915160
crossref_primary_10_1109_ACCESS_2024_3456430
crossref_primary_10_1109_TCYB_2019_2917078
crossref_primary_10_1109_TNN_2010_2050601
crossref_primary_10_1155_2015_415734
crossref_primary_10_1371_journal_pone_0178330
crossref_primary_10_1016_j_jfranklin_2021_02_022
crossref_primary_10_1080_00207721_2018_1479464
crossref_primary_10_1016_j_jfranklin_2020_08_044
crossref_primary_10_1016_j_cnsns_2018_07_016
crossref_primary_10_1016_j_neucom_2016_01_070
crossref_primary_10_1109_ACCESS_2020_3030535
crossref_primary_10_3389_frobt_2020_538347
crossref_primary_10_1016_j_automatica_2011_03_014
crossref_primary_10_1049_iet_cta_2011_0011
crossref_primary_10_3390_e18010029
crossref_primary_10_1109_TSMC_2017_2732679
crossref_primary_10_1002_acs_2682
crossref_primary_10_1109_TNNLS_2017_2764495
crossref_primary_10_1109_TFUZZ_2022_3182746
crossref_primary_10_1109_ACCESS_2021_3136892
crossref_primary_10_1016_j_neucom_2016_08_052
crossref_primary_10_1016_j_chaos_2024_115344
crossref_primary_10_1016_j_ins_2017_04_036
crossref_primary_10_1080_00207721_2013_793781
crossref_primary_10_1080_00207721_2013_837544
crossref_primary_10_1115_1_4035092
crossref_primary_10_3390_app10051732
crossref_primary_10_1109_TNNLS_2016_2636323
crossref_primary_10_1007_s00500_021_06430_9
crossref_primary_10_1108_AA_11_2015_107
crossref_primary_10_1007_s11071_018_4699_7
crossref_primary_10_1049_iet_cta_2014_0523
crossref_primary_10_1109_TCNS_2016_2578039
crossref_primary_10_1177_0959651811398853
crossref_primary_10_1155_2014_519524
crossref_primary_10_1155_2013_908180
crossref_primary_10_1155_2013_394137
crossref_primary_10_1016_j_neucom_2013_01_010
crossref_primary_10_1016_j_neucom_2017_03_066
crossref_primary_10_1016_j_neucom_2017_02_031
crossref_primary_10_1002_rnc_4852
crossref_primary_10_1016_j_ins_2017_03_013
crossref_primary_10_1080_00207721_2013_849770
crossref_primary_10_1109_TSMC_2015_2486751
crossref_primary_10_1016_j_neucom_2015_06_066
crossref_primary_10_1016_j_neucom_2013_02_038
crossref_primary_10_1115_1_4028687
crossref_primary_10_1109_TCYB_2019_2933436
crossref_primary_10_1007_s11071_022_07505_4
crossref_primary_10_1080_00207721_2020_1803441
crossref_primary_10_1109_TCYB_2020_3029045
crossref_primary_10_1109_TCYB_2019_2959908
crossref_primary_10_1109_TFUZZ_2016_2554151
crossref_primary_10_1016_j_ifacol_2021_08_480
crossref_primary_10_1016_j_sysconle_2011_07_004
crossref_primary_10_1016_j_ast_2020_105986
crossref_primary_10_1109_TNNLS_2013_2293499
crossref_primary_10_1109_TCYB_2018_2801345
crossref_primary_10_1007_s11432_015_5504_6
crossref_primary_10_1002_mma_7806
crossref_primary_10_1016_j_neucom_2019_07_067
crossref_primary_10_1080_00207721_2015_1090040
crossref_primary_10_1016_j_conengprac_2022_105184
crossref_primary_10_1002_rnc_1647
crossref_primary_10_1016_j_neucom_2020_01_108
crossref_primary_10_1109_TNNLS_2021_3126531
crossref_primary_10_1109_TNNLS_2017_2673020
crossref_primary_10_1016_j_automatica_2012_05_068
crossref_primary_10_1109_TCYB_2016_2556002
crossref_primary_10_1016_j_neucom_2016_06_013
crossref_primary_10_1080_00207179_2019_1613560
crossref_primary_10_1016_j_neunet_2019_09_028
crossref_primary_10_1002_asjc_1104
crossref_primary_10_1007_s12555_017_0231_y
crossref_primary_10_1109_TAC_2016_2535102
crossref_primary_10_1007_s11071_015_2476_4
crossref_primary_10_1016_j_oceaneng_2023_113864
crossref_primary_10_1016_j_amc_2023_128522
crossref_primary_10_1016_j_oceaneng_2023_114950
crossref_primary_10_1080_00207179_2017_1300685
crossref_primary_10_1109_TCYB_2021_3118782
crossref_primary_10_1109_TCYB_2016_2623898
crossref_primary_10_1109_TFUZZ_2019_2893301
crossref_primary_10_1080_00207721_2016_1139760
crossref_primary_10_1016_j_neucom_2013_12_064
crossref_primary_10_1007_s00521_023_08646_2
crossref_primary_10_1002_asjc_2423
crossref_primary_10_1016_S1874_1029_11_60298_X
crossref_primary_10_1016_j_automatica_2010_08_008
crossref_primary_10_1016_j_amc_2013_08_059
crossref_primary_10_1109_TCYB_2021_3140104
crossref_primary_10_1007_s11431_023_2684_6
crossref_primary_10_1016_j_jfranklin_2018_01_030
crossref_primary_10_1080_00207721_2024_2304133
crossref_primary_10_1016_j_neucom_2020_08_051
crossref_primary_10_1080_00207179_2023_2285408
crossref_primary_10_1016_j_jfranklin_2021_01_028
crossref_primary_10_1080_00207721_2014_911384
crossref_primary_10_1109_TNSE_2021_3114410
crossref_primary_10_1109_TSMC_2018_2813399
crossref_primary_10_1016_j_automatica_2014_02_028
crossref_primary_10_1109_TNNLS_2023_3238336
crossref_primary_10_1016_j_sysconle_2015_10_007
crossref_primary_10_1080_00207721_2013_871367
crossref_primary_10_1016_j_automatica_2014_07_020
crossref_primary_10_1109_TAC_2021_3062594
crossref_primary_10_1109_TCYB_2017_2786318
crossref_primary_10_1109_TCNS_2019_2937202
crossref_primary_10_3724_SP_J_1004_2012_00357
crossref_primary_10_1109_TFUZZ_2022_3199573
crossref_primary_10_1016_j_neucom_2021_10_059
crossref_primary_10_1016_j_neucom_2016_06_064
crossref_primary_10_1016_j_neucom_2014_09_037
crossref_primary_10_1007_s40815_019_00769_w
crossref_primary_10_1109_TCNS_2016_2570016
crossref_primary_10_1109_TSMC_2023_3259423
crossref_primary_10_3390_s22072748
crossref_primary_10_1109_TNSE_2023_3305969
crossref_primary_10_1016_j_oceaneng_2023_114545
crossref_primary_10_1109_TETCI_2023_3296448
crossref_primary_10_1016_j_neucom_2016_05_029
crossref_primary_10_1109_TFUZZ_2018_2864940
crossref_primary_10_1080_00207721_2014_966281
crossref_primary_10_1016_j_nahs_2019_100833
crossref_primary_10_1109_TIV_2024_3372652
crossref_primary_10_1109_TASE_2023_3348469
crossref_primary_10_1007_s10846_018_0843_3
crossref_primary_10_1109_TIE_2011_2160140
crossref_primary_10_1109_TNNLS_2018_2803059
crossref_primary_10_1109_TRO_2024_3463476
crossref_primary_10_1109_TITS_2023_3240135
crossref_primary_10_1109_TFUZZ_2019_2893339
crossref_primary_10_1109_TNNLS_2021_3104839
crossref_primary_10_1109_ACCESS_2019_2950428
crossref_primary_10_1002_asjc_1493
crossref_primary_10_52547_joc_15_4_25
crossref_primary_10_52547_joc_15_3_55
crossref_primary_10_1007_s00521_017_3178_2
crossref_primary_10_1080_00207721_2012_724096
crossref_primary_10_1177_01423312211043065
crossref_primary_10_1109_TIE_2017_2756594
crossref_primary_10_1049_iet_cta_2018_5630
crossref_primary_10_1109_TII_2016_2612646
crossref_primary_10_1109_TNNLS_2020_2991015
crossref_primary_10_1007_s40815_020_00943_5
crossref_primary_10_1109_TCYB_2018_2853623
crossref_primary_10_1109_TFUZZ_2024_3418577
crossref_primary_10_1109_TCYB_2014_2350335
crossref_primary_10_1155_2012_530759
crossref_primary_10_1109_TCST_2023_3277595
crossref_primary_10_1007_s00521_014_1668_z
crossref_primary_10_1016_j_neucom_2016_05_044
crossref_primary_10_1109_TFUZZ_2022_3154433
crossref_primary_10_1109_TCSII_2018_2882538
crossref_primary_10_1109_TCYB_2015_2388582
crossref_primary_10_1109_MSMC_2024_3358065
crossref_primary_10_1002_rnc_4885
crossref_primary_10_1007_s12541_018_0021_3
crossref_primary_10_1016_j_automatica_2015_01_043
crossref_primary_10_1016_j_jfranklin_2022_08_008
crossref_primary_10_3390_electronics13030524
crossref_primary_10_1007_s12559_022_10082_8
crossref_primary_10_1049_iet_cta_2015_0627
crossref_primary_10_1016_j_jfranklin_2014_05_011
crossref_primary_10_1016_j_matcom_2024_05_015
crossref_primary_10_1002_rnc_6817
crossref_primary_10_1016_j_ins_2020_08_013
crossref_primary_10_1109_TCNS_2022_3233101
crossref_primary_10_1007_s12555_013_0325_0
crossref_primary_10_1016_j_arcontrol_2021_10_014
crossref_primary_10_1155_2015_941697
crossref_primary_10_1049_iet_cta_2015_0638
crossref_primary_10_1109_TCYB_2021_3110645
crossref_primary_10_1109_TNNLS_2016_2577342
crossref_primary_10_1002_rnc_3310
crossref_primary_10_1109_TCNS_2023_3272848
crossref_primary_10_1016_j_neucom_2021_02_039
crossref_primary_10_1049_iet_cta_2018_5802
crossref_primary_10_1109_TSMCB_2011_2167679
crossref_primary_10_1016_j_jfranklin_2017_01_021
crossref_primary_10_1177_0142331216663824
crossref_primary_10_1109_TCYB_2015_2494738
crossref_primary_10_1109_TAC_2013_2270869
crossref_primary_10_1109_TNNLS_2013_2293507
crossref_primary_10_1007_s10846_023_01987_z
crossref_primary_10_1002_rnc_3584
crossref_primary_10_1109_TNNLS_2023_3243627
crossref_primary_10_3182_20110828_6_IT_1002_02835
crossref_primary_10_1016_j_neucom_2015_10_090
crossref_primary_10_1016_j_neucom_2021_03_057
crossref_primary_10_1002_rnc_7801
crossref_primary_10_1016_j_jfranklin_2019_05_031
crossref_primary_10_1109_TCSI_2010_2097691
crossref_primary_10_1016_j_automatica_2012_05_008
crossref_primary_10_1109_ACCESS_2021_3137205
crossref_primary_10_1007_s40815_019_00710_1
crossref_primary_10_1016_j_jfranklin_2021_08_033
crossref_primary_10_1109_TIE_2023_3335448
crossref_primary_10_1016_j_neucom_2012_12_033
crossref_primary_10_1109_TCYB_2018_2883335
crossref_primary_10_1016_j_neucom_2017_12_052
crossref_primary_10_1016_j_isatra_2018_12_051
crossref_primary_10_1016_j_oceaneng_2023_116313
crossref_primary_10_1080_00207179_2017_1305510
crossref_primary_10_1016_j_automatica_2013_03_007
crossref_primary_10_1007_s12555_022_0383_2
crossref_primary_10_1080_00207721_2014_960906
crossref_primary_10_1016_j_ins_2015_04_025
crossref_primary_10_1016_j_ins_2024_120122
crossref_primary_10_1016_j_isatra_2017_11_008
crossref_primary_10_1007_s12555_017_0641_x
crossref_primary_10_1080_00207721_2018_1542464
crossref_primary_10_1016_j_oceaneng_2022_110966
crossref_primary_10_1002_rnc_4054
crossref_primary_10_1109_TSMC_2016_2524063
crossref_primary_10_1016_j_ins_2014_02_148
crossref_primary_10_1016_j_automatica_2016_01_004
crossref_primary_10_1109_TCYB_2023_3312696
crossref_primary_10_1080_00207721_2021_1954720
crossref_primary_10_1016_j_neucom_2019_01_101
crossref_primary_10_1155_2014_135690
crossref_primary_10_1109_TSMC_2019_2950114
crossref_primary_10_1109_TSMCB_2010_2095497
crossref_primary_10_1007_s11071_014_1483_1
crossref_primary_10_1002_asjc_427
crossref_primary_10_1007_s12555_023_0486_4
crossref_primary_10_1016_j_jfranklin_2019_01_020
crossref_primary_10_1049_iet_cta_2017_0188
crossref_primary_10_1109_TSMCB_2012_2192270
crossref_primary_10_1109_TCYB_2015_2509482
crossref_primary_10_1109_TCYB_2014_2326549
crossref_primary_10_1016_j_jfranklin_2017_05_034
crossref_primary_10_1016_j_oceaneng_2021_110104
crossref_primary_10_1109_TCYB_2021_3123788
crossref_primary_10_1109_ACCESS_2020_3015957
crossref_primary_10_1016_j_jfranklin_2016_10_034
crossref_primary_10_1007_s13042_017_0654_z
crossref_primary_10_1109_TSMC_2017_2660883
crossref_primary_10_1109_TCYB_2020_3035283
crossref_primary_10_1109_TFUZZ_2017_2765627
crossref_primary_10_1109_TCYB_2017_2737652
crossref_primary_10_1155_2018_1934174
crossref_primary_10_1109_TSMCB_2012_2207718
crossref_primary_10_1007_s10846_017_0554_1
crossref_primary_10_1109_TEC_2014_2359934
crossref_primary_10_1016_j_nahs_2015_10_005
crossref_primary_10_1007_s11071_017_3833_2
crossref_primary_10_1016_j_isatra_2017_04_002
crossref_primary_10_1109_TCST_2018_2884226
crossref_primary_10_1016_j_automatica_2019_108559
crossref_primary_10_1080_00207721_2014_886135
crossref_primary_10_1007_s11071_012_0533_9
crossref_primary_10_1016_j_neucom_2015_10_114
crossref_primary_10_1109_TSMC_2016_2606159
crossref_primary_10_1155_2015_292437
crossref_primary_10_1016_j_oceaneng_2021_109545
crossref_primary_10_1109_TSMC_2015_2470635
crossref_primary_10_1080_00207721_2018_1453953
crossref_primary_10_1109_TFUZZ_2019_2908771
crossref_primary_10_1007_s11071_013_0951_3
crossref_primary_10_1007_s00034_013_9687_z
crossref_primary_10_1080_00207721_2011_598960
crossref_primary_10_1016_j_isatra_2017_12_011
crossref_primary_10_1177_0954406216646802
crossref_primary_10_1016_j_oceaneng_2024_117950
crossref_primary_10_1088_1674_1056_19_8_080508
crossref_primary_10_1109_TNNLS_2021_3053112
crossref_primary_10_3934_math_2021698
crossref_primary_10_1177_0142331220933441
crossref_primary_10_1177_0142331218823875
crossref_primary_10_1016_j_ins_2015_03_007
crossref_primary_10_1177_1687814015599926
crossref_primary_10_1080_00207721_2016_1193257
crossref_primary_10_1109_TNNLS_2012_2196710
crossref_primary_10_1109_TFUZZ_2015_2486817
crossref_primary_10_1109_TII_2021_3050768
crossref_primary_10_1016_j_neucom_2015_10_013
crossref_primary_10_1109_TFUZZ_2021_3094716
crossref_primary_10_1016_j_amc_2017_12_038
crossref_primary_10_1016_j_ins_2018_08_025
crossref_primary_10_1002_rnc_6576
crossref_primary_10_1016_j_jfranklin_2022_07_026
crossref_primary_10_1007_s00521_015_2117_3
crossref_primary_10_1109_TNNLS_2022_3214681
crossref_primary_10_1080_00207721_2016_1146973
crossref_primary_10_1109_MCS_2014_2350571
crossref_primary_10_1016_j_jfranklin_2016_02_011
crossref_primary_10_1109_TCNS_2023_3337671
crossref_primary_10_1016_j_neucom_2021_01_069
crossref_primary_10_1016_j_sysconle_2019_104528
crossref_primary_10_1109_TSMC_2021_3062077
crossref_primary_10_1016_j_jfranklin_2015_09_008
crossref_primary_10_1109_TNNLS_2021_3117364
crossref_primary_10_1007_s11424_018_7269_7
crossref_primary_10_1016_j_jfranklin_2019_07_019
crossref_primary_10_1109_TFUZZ_2010_2046329
crossref_primary_10_1109_TSMC_2017_2768101
crossref_primary_10_1016_j_cnsns_2023_107319
crossref_primary_10_1109_TNNLS_2013_2238554
crossref_primary_10_1016_j_isatra_2019_02_030
crossref_primary_10_1109_TCYB_2019_2951151
crossref_primary_10_1080_00207179_2013_790077
crossref_primary_10_1007_s10462_021_10097_x
crossref_primary_10_1080_00207721_2024_2346754
crossref_primary_10_1109_ACCESS_2018_2869392
crossref_primary_10_1007_s11071_018_4684_1
crossref_primary_10_1002_rnc_2811
crossref_primary_10_1016_j_jfranklin_2018_12_003
crossref_primary_10_1080_00207721_2014_980367
crossref_primary_10_1080_00207721_2013_792973
crossref_primary_10_1109_TNNLS_2014_2359955
crossref_primary_10_1109_TCYB_2016_2573837
crossref_primary_10_1080_00207721_2016_1193261
crossref_primary_10_1177_09596518241255161
crossref_primary_10_1109_TCYB_2018_2822258
crossref_primary_10_1109_TCYB_2015_2402192
crossref_primary_10_1109_ACCESS_2018_2831912
crossref_primary_10_1109_TFUZZ_2019_2936359
crossref_primary_10_1109_TFUZZ_2017_2723346
crossref_primary_10_1109_TCYB_2016_2608499
crossref_primary_10_1541_ieejeiss_133_1076
crossref_primary_10_20965_jaciii_2021_p0974
crossref_primary_10_1016_j_jfranklin_2022_06_029
crossref_primary_10_1080_00207721_2015_1056274
crossref_primary_10_1109_TFUZZ_2023_3309706
crossref_primary_10_1016_j_sysconle_2013_06_011
crossref_primary_10_1002_acs_2866
crossref_primary_10_1007_s00521_016_2614_z
crossref_primary_10_1109_TSMC_2017_2702705
crossref_primary_10_1016_j_jfranklin_2022_06_013
crossref_primary_10_1109_TNNLS_2015_2464314
crossref_primary_10_1080_00207720903572463
crossref_primary_10_1016_j_eswa_2013_07_072
crossref_primary_10_1109_TIE_2017_2677330
crossref_primary_10_1080_00207721_2014_906681
crossref_primary_10_1016_j_sysconle_2020_104804
crossref_primary_10_1109_TCYB_2014_2345791
crossref_primary_10_1080_00207721_2011_652221
crossref_primary_10_1002_ecj_11808
crossref_primary_10_1049_iet_cta_2014_1319
crossref_primary_10_1080_00207721_2024_2328057
crossref_primary_10_1049_iet_its_2019_0221
crossref_primary_10_1080_00207721_2012_670296
crossref_primary_10_1016_j_neucom_2015_06_012
crossref_primary_10_3182_20140824_6_ZA_1003_00344
crossref_primary_10_1109_TCYB_2023_3259967
crossref_primary_10_1049_iet_cta_2012_0048
crossref_primary_10_1109_TSMC_2019_2944275
crossref_primary_10_1049_iet_cta_2015_0187
crossref_primary_10_1016_j_neucom_2019_04_018
crossref_primary_10_1080_00207721_2017_1324923
crossref_primary_10_1109_ACCESS_2019_2947513
crossref_primary_10_1016_j_automatica_2018_02_010
crossref_primary_10_1109_TNNLS_2014_2302477
crossref_primary_10_1109_TCYB_2016_2629268
crossref_primary_10_1109_TITS_2024_3521961
crossref_primary_10_1007_s10514_018_9700_2
crossref_primary_10_1007_s12555_013_0518_6
crossref_primary_10_1109_TAC_2016_2610325
crossref_primary_10_1016_j_neucom_2015_12_117
crossref_primary_10_1109_TCYB_2018_2789917
crossref_primary_10_1109_TFUZZ_2022_3191087
crossref_primary_10_1109_TCYB_2014_2301555
crossref_primary_10_3390_a12050097
crossref_primary_10_1109_TNNLS_2021_3107623
crossref_primary_10_1016_j_isatra_2018_01_023
crossref_primary_10_1002_rnc_6263
crossref_primary_10_1002_acs_2657
crossref_primary_10_1109_TSMC_2023_3336200
crossref_primary_10_1109_TFUZZ_2020_3008779
crossref_primary_10_1109_TCYB_2015_2452217
crossref_primary_10_1002_rnc_5083
crossref_primary_10_1080_00207721_2013_798445
crossref_primary_10_1109_TFUZZ_2020_3021714
crossref_primary_10_1016_j_automatica_2014_10_015
crossref_primary_10_1038_s41598_024_73959_8
crossref_primary_10_1016_j_oceaneng_2020_107941
crossref_primary_10_1016_j_ins_2016_08_064
crossref_primary_10_1049_iet_cta_2018_6127
crossref_primary_10_1155_2013_283196
crossref_primary_10_1016_j_neucom_2019_05_074
crossref_primary_10_1109_TSG_2024_3370912
crossref_primary_10_1016_j_jfranklin_2016_04_002
crossref_primary_10_1016_j_neucom_2014_11_035
crossref_primary_10_1016_j_neunet_2018_05_005
crossref_primary_10_1016_j_oceaneng_2022_111670
crossref_primary_10_1016_j_ejcon_2024_101058
crossref_primary_10_1002_rnc_1829
crossref_primary_10_1109_TSMC_2017_2734799
crossref_primary_10_1049_iet_cta_2018_5391
crossref_primary_10_1109_ACCESS_2018_2820813
crossref_primary_10_1016_j_neucom_2015_12_014
crossref_primary_10_1177_14613484211032758
crossref_primary_10_1038_s41598_022_05663_4
crossref_primary_10_1016_j_automatica_2013_02_004
Cites_doi 10.1109/CDC.2005.1583238
10.1016/j.jpdc.2006.08.010
10.1109/TAC.2004.834113
10.1109/TNN.2004.826130
10.1016/j.sysconle.2006.06.005
10.1109/ACC.2005.1470240
10.1137/060657029
10.1016/j.automatica.2007.07.022
10.1103/PhysRevLett.75.1226
10.1002/0471781819
10.1002/rnc.1144
10.1109/TAC.2008.924961
10.1109/TAC.2003.812781
10.1109/72.80202
10.1109/ACC.2005.1470239
10.1109/ISIC.2008.4635941
10.1007/978-1-4613-0163-9
10.2514/1.9287
10.1109/TAC.2005.846556
10.1109/TAC.2005.864190
10.1109/TAC.2004.834433
10.1109/JPROC.2006.887293
10.1109/CDC.2005.1583486
10.1109/TAC.2004.841888
10.1016/j.automatica.2006.02.013
10.1016/j.sysconle.2004.02.022
10.1142/3774
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMCB.2008.2007810
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1941-0492
EndPage 647
ExternalDocumentID 19174350
10_1109_TSMCB_2008_2007810
4760250
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VH1
VJK
AAYXX
CITATION
NPM
7X8
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c446t-942b7c17da25e14022015f903e5ed0652fb79b0438adcd41f94e1355bf201f413
IEDL.DBID RIE
ISSN 1083-4419
1941-0492
IngestDate Fri Jul 11 08:13:51 EDT 2025
Thu Jul 10 17:39:24 EDT 2025
Mon Jul 21 05:45:12 EDT 2025
Tue Jul 01 02:00:42 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Aug 26 16:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-942b7c17da25e14022015f903e5ed0652fb79b0438adcd41f94e1355bf201f413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 19174350
PQID 67121352
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_67121352
crossref_citationtrail_10_1109_TSMCB_2008_2007810
ieee_primary_4760250
proquest_miscellaneous_869849336
crossref_primary_10_1109_TSMCB_2008_2007810
pubmed_primary_19174350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on systems, man and cybernetics. Part B, Cybernetics
PublicationTitleAbbrev TSMCB
PublicationTitleAlternate IEEE Trans Syst Man Cybern B Cybern
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref10
ref2
ref1
ref17
ref16
ref19
ref18
xiao (ref11) 2007; 67
ref26
polycarpou (ref23) 1991
ref20
ref22
lewis (ref24) 1998
godsil (ref30) 2001
ref28
ref27
ref29
ref8
ref7
schilling (ref32) 1998
ref9
ref4
ref3
ref6
ref5
ge (ref25) 1998
cheng (ref21) 2008
References_xml – ident: ref28
  doi: 10.1109/CDC.2005.1583238
– volume: 67
  start-page: 33
  year: 2007
  ident: ref11
  article-title: distributed average consensus with least-mean-square deviation
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2006.08.010
– ident: ref7
  doi: 10.1109/TAC.2004.834113
– ident: ref31
  doi: 10.1109/TNN.2004.826130
– ident: ref14
  doi: 10.1016/j.sysconle.2006.06.005
– ident: ref13
  doi: 10.1109/ACC.2005.1470240
– ident: ref12
  doi: 10.1137/060657029
– ident: ref15
  doi: 10.1016/j.automatica.2007.07.022
– ident: ref5
  doi: 10.1103/PhysRevLett.75.1226
– ident: ref26
  doi: 10.1002/0471781819
– ident: ref16
  doi: 10.1002/rnc.1144
– ident: ref17
  doi: 10.1109/TAC.2008.924961
– ident: ref6
  doi: 10.1109/TAC.2003.812781
– ident: ref22
  doi: 10.1109/72.80202
– ident: ref18
  doi: 10.1109/ACC.2005.1470239
– ident: ref20
  doi: 10.1109/ISIC.2008.4635941
– ident: ref4
  doi: 10.1109/CDC.2005.1583238
– year: 2001
  ident: ref30
  publication-title: Algebraic Graph Theory
  doi: 10.1007/978-1-4613-0163-9
– ident: ref1
  doi: 10.2514/1.9287
– year: 1991
  ident: ref23
  publication-title: Identification and control of nonlinear systems using neural network models Design and stability analysis
– ident: ref9
  doi: 10.1109/TAC.2005.846556
– ident: ref2
  doi: 10.1109/TAC.2005.864190
– ident: ref3
  doi: 10.1109/TAC.2004.834433
– ident: ref19
  doi: 10.1109/JPROC.2006.887293
– year: 2008
  ident: ref21
  article-title: decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics
  publication-title: Proc IEEE Int Conf Syst Man Cybern
– ident: ref27
  doi: 10.1109/CDC.2005.1583486
– ident: ref8
  doi: 10.1109/TAC.2004.841888
– ident: ref10
  doi: 10.1016/j.automatica.2006.02.013
– year: 1998
  ident: ref24
  publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems
– ident: ref29
  doi: 10.1016/j.sysconle.2004.02.022
– year: 1998
  ident: ref25
  publication-title: Adaptive Neural Network Control of Robotic Manipulators
  doi: 10.1142/3774
– year: 1998
  ident: ref32
  publication-title: Fundamentals of Robotics Analysis and Control
SSID ssj0009097
Score 2.4226131
Snippet A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 636
SubjectTerms Adaptive
Adaptive control
Approximation
Communication switching
Computer simulation
consensus
Cybernetics
Distributed control
Disturbances
Dynamical systems
Dynamics
Mathematical analysis
multiagent system
Multiagent systems
Network topology
Neural networks
robust
Robust control
Robustness
Uncertainty
Vehicle dynamics
Title Decentralized Robust Adaptive Control for the Multiagent System Consensus Problem Using Neural Networks
URI https://ieeexplore.ieee.org/document/4760250
https://www.ncbi.nlm.nih.gov/pubmed/19174350
https://www.proquest.com/docview/67121352
https://www.proquest.com/docview/869849336
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLaAUzm0BUqbPufQQyvIksdkkjnCtghVWlTxkLhFmReqWu2iJrnw62vPzC6oKqi3HJxkInviz2P7M8BHw7mps9qlutIlBSguVU7jxmuka6yQuvHV7rNTcXLJv11VV2uwv-qFsdb64jM7oUufyzcLPdJR2QGvBbnsdVjHwC30at0R7GZhkApCihRdvFw2yGTy4OJ8Nj0KZZN0MtfkfvybJCxO7fb3_JEfsPIw1vQ-5_gZzJarDaUmPyfjoCb69i8ix__9nOfwNIJPdhisZQvW7HwbNu9REm7DVtzsPfsUGak_78D1FxuLOH_cWsPOFmrsB3Zouhv6WbJpKHdniH8Z4knmm3o76tligRCdJHqaqdGz72GADfOlCoyoQXBBp6EWvX8Bl8dfL6YnaZzQkGoMI4dU8kLVOq9NV1QWQ7UC4UTlZFbayhoEN4VTtVSUbOyMNjx3ktscEY5yKOjQf-7Cxnwxt6-AiUrzTnb4PBQqlehyVSK6yo1SUphcJZAv9dTqSF9OUzR-tT6MyWTr1RzGakY1J7C3uucmkHc8Kr1DOlpJRvUk8GFpDi1uPcqndHO7GPtW1MSHVxUJsAckGiEbLstSJPAyGNLdOqL9vf73W9_Ak5C3ovOet7Ax_B7tO4Q_g3rv7f4PEX3-OA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKOQCHQlsKaYHOgQMIss1jMskcy0K1QHeFYCv1FmVeCIF2K5Jc-utrz2S3FaKIWw5OMpHt-Jux_RngpeHclEnpYl3onDYoLlZOo-NV0lVWSF35avfpTEzO-Kfz4nwD3q57Yay1vvjMjujS5_LNUvd0VHbES0Eh-w7cxbhfZKFb65piNwmjVBBUxBjk5apFJpFH82_T8btQOElnc1XqB8BJQuPUcH8jIvkRK7ejTR91Th7CdLXeUGzyc9R3aqQv_6By_N8PegRbA_xkx8FetmHDLnbgwQ1Swh3YHty9Za8GTurXu_D9vR3KOH9cWsO-LlXfduzYNBf0u2TjUPDOEAEzRJTMt_U21LXFAiU6SbQ0VaNlX8IIG-aLFRiRg-CCZqEavX0MZycf5uNJPMxoiDVuJLtY8kyVOi1NkxUWN2sZAorCySS3hTUIbzKnSqko3dgYbXjqJLcpYhzlUNBhBN2DzcVyYZ8CE4XmjWzweSiUK9GkKkd8lRqlpDCpiiBd6anWA4E5zdH4VfuNTCJrr-YwWHNQcwRv1vdcBPqOf0rvko7WkoN6IjhcmUONzkcZlWZhl31bi5IY8YosAnaLRCVkxWWeiwieBEO6Xsdgf_t_f-sh3JvMp6f16cfZ5wO4H7JYdPrzDDa73719jmCoUy-8D1wBe0cBkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+Robust+Adaptive+Control+for+the+Multiagent+System+Consensus+Problem+Using+Neural+Networks&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Hou%2C+Zeng-Guang&rft.au=Cheng%2C+Long&rft.au=Tan%2C+Min&rft.date=2009-06-01&rft.issn=1083-4419&rft.volume=39&rft.issue=3&rft_id=info:doi/10.1109%2FTSMCB.2008.2007810&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon