Decentralized Robust Adaptive Control for the Multiagent System Consensus Problem Using Neural Networks
A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capabilit...
Saved in:
Published in | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 39; no. 3; pp. 636 - 647 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1083-4419 1941-0492 1941-0492 |
DOI: | 10.1109/TSMCB.2008.2007810 |