Identifying Types of Physical Activity With a Single Accelerometer: Evaluating Laboratory-trained Algorithms in Daily Life

Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 58; no. 9; pp. 2656 - 2663
Main Authors Gyllensten, Illapha Cuba, Bonomi, Alberto G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m 2 ). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3 %; p <; 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2011.2160723