Computer-Aided Diagnosis Algorithm for Classification of Malignant Melanoma Using Deep Neural Networks

Malignant melanoma accounts for about 1–3% of all malignancies in the West, especially in the United States. More than 9000 people die each year. In general, it is difficult to characterize a skin lesion from a photograph. In this paper, we propose a deep learning-based computer-aided diagnostic alg...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 16; p. 5551
Main Authors Kim, Chan-Il, Hwang, Seok-Min, Park, Eun-Bin, Won, Chang-Hee, Lee, Jong-Ha
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 18.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Malignant melanoma accounts for about 1–3% of all malignancies in the West, especially in the United States. More than 9000 people die each year. In general, it is difficult to characterize a skin lesion from a photograph. In this paper, we propose a deep learning-based computer-aided diagnostic algorithm for the classification of malignant melanoma and benign skin tumors from RGB channel skin images. The proposed deep learning model constitutes a tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to classify skin lesions in dermoscopy images. We implement an algorithm to classify malignant melanoma and benign tumors using skin lesion images and expert labeling results from convolutional neural networks. The U-Net model achieved a dice similarity coefficient of 81.1% compared to the expert labeling results. The classification accuracy of malignant melanoma reached 80.06%. As a result, the proposed AI algorithm is expected to be utilized as a computer-aided diagnostic algorithm to help early detection of malignant melanoma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21165551