Spectrum Sensing Method Based on Information Geometry and Deep Neural Network

Due to the scarcity of radio spectrum resources and the growing demand, the use of spectrum sensing technology to improve the utilization of spectrum resources has become a hot research topic. In order to improve the utilization of spectrum resources, this paper proposes a spectrum sensing method th...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 22; no. 1; p. 94
Main Authors Du, Kaixuan, Wan, Pin, Wang, Yonghua, Ai, Xiongzhi, Chen, Huang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the scarcity of radio spectrum resources and the growing demand, the use of spectrum sensing technology to improve the utilization of spectrum resources has become a hot research topic. In order to improve the utilization of spectrum resources, this paper proposes a spectrum sensing method that combines information geometry and deep learning. Firstly, the covariance matrix of the sensing signal is projected onto the statistical manifold. Each sensing signal can be regarded as a point on the manifold. Then, the geodesic distance between the signals is perceived as its statistical characteristics. Finally, deep neural network is used to classify the dataset composed of the geodesic distance. Simulation experiments show that the proposed spectrum sensing method based on deep neural network and information geometry has better performance in terms of sensing precision.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e22010094