Inorganic nitrate is a possible source for systemic generation of nitric oxide
Nitrate and nitrite have been considered stable inactive end products of nitric oxide (NO). While several recent studies now imply that nitrite can be reduced to bioactive NO again, the more stable anion nitrate is still considered to be biologically inert. Nitrate is concentrated in saliva, where a...
Saved in:
Published in | Free radical biology & medicine Vol. 37; no. 3; pp. 395 - 400 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.08.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nitrate and nitrite have been considered stable inactive end products of nitric oxide (NO). While several recent studies now imply that nitrite can be reduced to bioactive NO again, the more stable anion nitrate is still considered to be biologically inert. Nitrate is concentrated in saliva, where a part of it is reduced to nitrite by bacterial nitrate reductases. We tested if ingestion of inorganic nitrate would affect the salivary and systemic levels of nitrite and S-nitrosothiols, both considered to be circulating storage pools for NO. Levels of nitrate, nitrite, and S-nitrosothiols were measured in plasma, saliva, and urine before and after ingestion of sodium nitrate (10 mg/kg). Nitrate levels increased greatly in saliva, plasma, and urine after the nitrate load. Salivary S-nitrosothiols also increased, but plasma levels remained unchanged. A 4-fold increase in plasma nitrite was observed after nitrate ingestion. If, however, the test persons avoided swallowing after the nitrate load, the increase in plasma nitrite was prevented, thereby illustrating its salivary origin. We show that nitrate is a substrate for systemic generation of nitrite. There are several pathways to further reduce this nitrite to NO. These results challenge the dogma that nitrate is biologically inert and instead suggest that a complete reverse pathway for generation of NO from nitrate exists. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0891-5849 |
DOI: | 10.1016/j.freeradbiomed.2004.04.027 |