Autonomous Exploration and Mapping with RFS Occupancy-Grid SLAM
This short note addresses the problem of autonomous on-line path-panning for exploration and occupancy-grid mapping using a mobile robot. The underlying algorithm for simultaneous localisation and mapping (SLAM) is based on random-finite set (RFS) modelling of ranging sensor measurements, implemente...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 20; no. 6; p. 456 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This short note addresses the problem of autonomous on-line path-panning for exploration and occupancy-grid mapping using a mobile robot. The underlying algorithm for simultaneous localisation and mapping (SLAM) is based on random-finite set (RFS) modelling of ranging sensor measurements, implemented as a Rao-Blackwellised particle filter. Path-planning in general must trade-off between exploration (which reduces the uncertainty in the map) and exploitation (which reduces the uncertainty in the robot pose). In this note we propose a reward function based on the Rényi divergence between the prior and the posterior densities, with RFS modelling of sensor measurements. This approach results in a joint map-pose uncertainty measure without a need to scale and tune their weights. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e20060456 |