High-Sensitivity Seismometer Development for Lunar Applications

Lunar seismology is a critical area of research, providing insights into the Moon’s internal structure, composition, and thermal history, as well as informing the design of safe and resilient habitats for future human settlements. This paper presents the development of a state-of-the-art, three-axis...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 16; p. 7245
Main Authors de Paula, Leandro A. N., Norton, Ronald S., Paik, Ho Jung, Schmerr, Nicholas C., Williamson, Paul R., Chui, Talso C. P., Hahn, Inseob
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lunar seismology is a critical area of research, providing insights into the Moon’s internal structure, composition, and thermal history, as well as informing the design of safe and resilient habitats for future human settlements. This paper presents the development of a state-of-the-art, three-axis broadband seismometer with a low-frequency range of 0.001–1 Hz and a target sensitivity over one order of magnitude greater than previous Apollo-era instruments. The paper details the design, assembly, methodology, and test results. We compare the acceleration noise of our prototype and commercial seismometers across all three axes. Increasing the test mass and reducing its natural frequency may further improve performance. These advancements in seismometer technology hold promise for enhancing our understanding of the Moon’s and other celestial bodies’ internal structures and for informing the design of future landed missions to ocean worlds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23167245