On-Chip Group-IV Heisenberg-Limited Sagnac Interferometric Gyroscope at Room Temperature

A room-temperature strip-guided “manufacturable” Silicon-on-Insulator (SOI)/GeSn integrated-photonics quantum-gyroscope chip operating at 1550 nm is proposed and analysed. We demonstrate how the entangled photons generated in Si Spontaneous Four Wave Mixing (SFWM) can be used to improve the resoluti...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 12; p. 3476
Main Authors De Leonardis, Francesco, Soref, Richard, De Carlo, Martino, Passaro, Vittorio M. N.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.06.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A room-temperature strip-guided “manufacturable” Silicon-on-Insulator (SOI)/GeSn integrated-photonics quantum-gyroscope chip operating at 1550 nm is proposed and analysed. We demonstrate how the entangled photons generated in Si Spontaneous Four Wave Mixing (SFWM) can be used to improve the resolution of a Sagnac interferometric gyroscope. We propose different integrated architectures based on degenerate and non-degenerate SFWM. The chip comprises several beam splitters, two SFWM entangled photon sources, a pump filter, integrated Mach–Zehnder interferometric gyro, and an array of waveguide coupled GeSn/Ge/Si single-photon avalanche detectors. The laser pumped SWFM sources generate the signal-idler pairs, which, in turn, are used to measure the two-photon, four-photon, and higher order coincidences, resulting in an increasing of the gyro resolution by a factor of two and four, with respect to the classical approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20123476