Adipose Tissue–Derived Stem Cells From Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation
Obesity, through low-grade inflammation, can drive insulin resistance and type 2 diabetes. While infiltration of adipose tissue (AT) with mononuclear cells (MNCs) is well established in obesity, the functional consequences of these interactions are less understood. Herein, we cocultured human adipos...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 64; no. 7; pp. 2477 - 2488 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Diabetes Association
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Obesity, through low-grade inflammation, can drive insulin resistance and type 2 diabetes. While infiltration of adipose tissue (AT) with mononuclear cells (MNCs) is well established in obesity, the functional consequences of these interactions are less understood. Herein, we cocultured human adipose-derived stem cells (ASCs) from obese individuals with MNCs and analyzed their reciprocal behavior. Presence of ASCs 1) enhanced interleukin (IL)-17A secretion by Th17 cells, 2) inhibited γ-interferon and tumor necrosis factor α secretion by Th1 cells, and 3) increased monocyte-mediated IL-1β secretion. IL-17A secretion also occurred in stromal vascular fractions issued from obese but not lean individuals. Th17 polarization mostly depended on physical contacts between ASCs and MNCs—with a contribution of intracellular adhesion molecule-1—and occurred through activation of the inflammasome and phosphatidylinositol 3-kinase pathways. ASCs favored STAT3 over STAT5 transcription factor binding on STAT binding sites within the IL-17A/F gene locus. Finally, conditioned media from activated ASC-MNC cocultures inhibited adipocyte differentiation mRNA markers and impaired insulin-mediated Akt phosphorylation and lipolysis inhibition. In conclusion, we report that obese- but not lean-derived ASCs induce Th17 promotion and monocyte activation. This proinflammatory environment, in turn, inhibits adipogenesis and adipocyte insulin response. The demonstration of an ASC-Th17-monocyte cell axis reveals a novel proinflammatory process taking place in AT during obesity and defines novel putative therapeutic targets. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0012-1797 1939-327X |
DOI: | 10.2337/db15-0162 |