Searches for continuous gravitational waves from neutron stars: A twenty-year retrospective
Seven years after the first direct detection of gravitational waves, from the collision of two black holes, the field of gravitational wave astronomy is firmly established. A first detection of continuous gravitational waves from rapidly-spinning neutron stars could be the field’s next big discovery...
Saved in:
Published in | Astroparticle physics Vol. 153; p. 102880 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Seven years after the first direct detection of gravitational waves, from the collision of two black holes, the field of gravitational wave astronomy is firmly established. A first detection of continuous gravitational waves from rapidly-spinning neutron stars could be the field’s next big discovery. I review the last twenty years of efforts to detect continuous gravitational waves using the LIGO and Virgo gravitational wave detectors. I summarise the model of a continuous gravitational wave signal, the challenges to finding such signals in noisy data, and the data analysis algorithms that have been developed to address those challenges. I present a quantitative analysis of 297 continuous wave searches from 80 papers, published from 2003 to 2022, and compare their sensitivities and coverage of the signal model parameter space. |
---|---|
ISSN: | 0927-6505 1873-2852 |
DOI: | 10.1016/j.astropartphys.2023.102880 |