A Compact and Flexible UHF RFID Tag Antenna for Massive IoT Devices in 5G System

Upcoming 5th-generation (5G) systems incorporate physical objects (referred to as things), which sense the presence of components such as gears, gadgets, and sensors. They may transmit many kinds of states in the smart city context, such as new deals at malls, safe distances on roads, patient heart...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 19; p. 5713
Main Authors Hussain, Muhammad, Amin, Yasar, Lee, Kyung-Geun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.10.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Upcoming 5th-generation (5G) systems incorporate physical objects (referred to as things), which sense the presence of components such as gears, gadgets, and sensors. They may transmit many kinds of states in the smart city context, such as new deals at malls, safe distances on roads, patient heart rhythms (especially in hospitals), and logistic control at aerodromes and seaports around the world. These serve to form the so-called future internet of things (IoT). From this futuristic perspective, everything should have its own identity. In this context, radio frequency identification (RFID) plays a specific role, which provides wireless communications in a secure manner. Passive RFID tags carry out work using the energy harvested among massive systems. RFID has been habitually realized as a prerequisite for IoT, the combination of which is called IoT RFID (I-RFID). For the current scenario, such tags should be productive, low-profile, compact, easily mountable, and have eco-friendly features. The presently available tags are not cost-effective and have not been proven as green tags for environmentally friendly IoT in 5G systems nor are they suitable for long-range communications in 5G systems. The proposed I-RFID tag uses the meandering angle technique (MAT) to construct a design that satisfies the features of a lower-cost printed antenna over the worldwide UHF RFID band standard (860–960 MHz). In our research, tag MAT antennas are fabricated on paper-based Korsnäs by screen- and flexo-printing, which have lowest simulated effective outcomes with dielectric variation due to humidity and have a plausible read range (RR) for European (EU; 866–868 MHz) and North American (NA; 902–928 MHz) UHF band standards. The I-RFID tag size is reduced by 36% to 38% w.r.t. a previously published case, the tag gain has been improved by 23.6% to 33.12%, and its read range has been enhanced by 50.9% and 59.6% for EU and NA UHF bands, respectively. It provides impressive performance on some platforms (e.g., plastic, paper, and glass), thereby providing a new state-of-the-art I-RFID tag with better qualities in 5G systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20195713