The Folding of Spectrin Domains I: Wild-type Domains Have the Same Stability but very Different Kinetic Properties

The study of proteins with the same architecture, but different sequence has proven to be a valuable tool in the protein folding field. As a prelude to studies on the folding mechanism of spectrin domains we present the kinetic characterisation of the wild-type forms of the 15th, 16th, and 17th doma...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 344; no. 1; pp. 195 - 205
Main Authors Scott, Kathryn A., Batey, Sarah, Hooton, Karen A., Clarke, Jane
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 12.11.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The study of proteins with the same architecture, but different sequence has proven to be a valuable tool in the protein folding field. As a prelude to studies on the folding mechanism of spectrin domains we present the kinetic characterisation of the wild-type forms of the 15th, 16th, and 17th domains of chicken brain α-spectrin (referred to as R15, R16 and R17, respectively). We show that the proteins all behave in a two-state manner, with different kinetic properties. The folding rate varies remarkably between different members, with a 5000-fold variation in folding rate and 3000-fold variation in unfolding rate seen for proteins differing only 1 kcal mol −1 in stability. We show clear evidence for significant complexity in the energy landscape of R16, which shows a change in amplitude outside the stopped-flow timescale and curvature in the unfolding arm of the chevron plot. The accompanying paper describes the characterisation of the folding pathway of this domain.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2004.09.037