Copper pollution decreases the resistance of soil microbial community to subsequent dry–rewetting disturbance

Dry–rewetting(DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of hea...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 39; no. 1; pp. 155 - 164
Main Authors Li, Jing, Wang, Jun-Tao, Hu, Hang-Wei, Ma, Yi-Bing, Zhang, Li-Mei, He, Ji-Zheng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dry–rewetting(DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown.Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils(fluvo-aquic soil and red soil)under three copper concentrations(zero, medium and high). Results showed that the fluctuations of substrate induced respiration(SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration(RS-SIR)were highest in non-copper-stressed(zero) soils. Structural equation model(SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in noncopper-stressed soil compared to the other two copper-stressed(medium and high) soils,which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance.
Bibliography:Dry–rewetting(DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown.Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils(fluvo-aquic soil and red soil)under three copper concentrations(zero, medium and high). Results showed that the fluctuations of substrate induced respiration(SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration(RS-SIR)were highest in non-copper-stressed(zero) soils. Structural equation model(SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in noncopper-stressed soil compared to the other two copper-stressed(medium and high) soils,which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance.
Copper stress Dry–rewetting disturbance Bacterial community Substrate induced respiration Resistance
11-2629/X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2015.10.009