Micro-Expression-Based Emotion Recognition Using Waterfall Atrous Spatial Pyramid Pooling Networks

Understanding a person’s attitude or sentiment from their facial expressions has long been a straightforward task for humans. Numerous methods and techniques have been used to classify and interpret human emotions that are commonly communicated through facial expressions, with either macro- or micro...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 12; p. 4634
Main Authors Stofa, Marzuraikah Mohd, Zulkifley, Mohd Asyraf, Zainuri, Muhammad Ammirrul Atiqi Mohd
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding a person’s attitude or sentiment from their facial expressions has long been a straightforward task for humans. Numerous methods and techniques have been used to classify and interpret human emotions that are commonly communicated through facial expressions, with either macro- or micro-expressions. However, performing this task using computer-based techniques or algorithms has been proven to be extremely difficult, whereby it is a time-consuming task to annotate it manually. Compared to macro-expressions, micro-expressions manifest the real emotional cues of a human, which they try to suppress and hide. Different methods and algorithms for recognizing emotions using micro-expressions are examined in this research, and the results are presented in a comparative approach. The proposed technique is based on a multi-scale deep learning approach that aims to extract facial cues of various subjects under various conditions. Then, two popular multi-scale approaches are explored, Spatial Pyramid Pooling (SPP) and Atrous Spatial Pyramid Pooling (ASPP), which are then optimized to suit the purpose of emotion recognition using micro-expression cues. There are four new architectures introduced in this paper based on multi-layer multi-scale convolutional networks using both direct and waterfall network flows. The experimental results show that the ASPP module with waterfall network flow, which we coined as WASPP-Net, outperforms the state-of-the-art benchmark techniques with an accuracy of 80.5%. For future work, a high-resolution approach to multi-scale approaches can be explored to further improve the recognition performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22124634