Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles
•Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.•Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges.•Chitosan – nanoTiO...
Saved in:
Published in | Biotechnology reports (Amsterdam, Netherlands) Vol. 24; p. e00350 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.•Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges.•Chitosan – nanoTiO2 scaffold results in significantly improved sponge robustness, biomineralization, and bone regeneration capability, as indicated by DMP1 and OCN gene upregulation in chitosan-50% nanoTiO2 sample.
Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering. |
---|---|
AbstractList | •
Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.
•
Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges.
•
Chitosan – nanoTiO
2
scaffold results in significantly improved sponge robustness, biomineralization, and bone regeneration capability, as indicated by DMP1 and OCN gene upregulation in chitosan-50% nanoTiO
2
sample.
Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO
2
nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO
2
nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO
2
nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO
4−
band observed in FTIR results. qPCR analysis supported chitosan - TiO
2
sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO
2
treated group. Finally, cytotoxicity analysis supported the fact that TiO
2
nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO
2
nanoparticles sponges could be a potential novel scaffold for bone tissue engineering. •Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.•Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges.•Chitosan – nanoTiO2 scaffold results in significantly improved sponge robustness, biomineralization, and bone regeneration capability, as indicated by DMP1 and OCN gene upregulation in chitosan-50% nanoTiO2 sample. Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering. Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering. Keywords: Bone regeneration, Chitosan, Sponges, TiO2 nanoparticles, Tissue engineering Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering. Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4- band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering.Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4- band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering. |
ArticleNumber | e00350 |
Author | Li, Ni Kagami, Hideaki Nagamura-Inoue, Tokiko Luthfansyah, Muhammad Mulia, Kamarza Tojo, Arinobu Nasikin, Mohammad Mardliyati, Etik Rochman, Nurul Taufiqu Pratama, Nanda Hendra Bachtiar, Endang Winiati Ikono, Radyum Vibriani, Agnia Yuniarni, Diah Retno Bachtiar, Boy Muchlis Li, Xianqi |
Author_xml | – sequence: 1 givenname: Radyum surname: Ikono fullname: Ikono, Radyum email: rikono@nano.or.id organization: Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia – sequence: 2 givenname: Ni surname: Li fullname: Li, Ni organization: Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, 1780 Hirookagobara, Shiojiri, Nagano-Prefecture, 399-0704, Japan – sequence: 3 givenname: Nanda Hendra surname: Pratama fullname: Pratama, Nanda Hendra organization: Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia – sequence: 4 givenname: Agnia surname: Vibriani fullname: Vibriani, Agnia organization: Department of Biology, Bandung Institute of Technology, Jl. Ganesha No. 10, 40132, Bandung, Indonesia – sequence: 5 givenname: Diah Retno surname: Yuniarni fullname: Yuniarni, Diah Retno organization: Department of Chemistry, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia – sequence: 6 givenname: Muhammad surname: Luthfansyah fullname: Luthfansyah, Muhammad organization: Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia – sequence: 7 givenname: Boy Muchlis surname: Bachtiar fullname: Bachtiar, Boy Muchlis organization: Oral Science Laboratory, Department of Dentistry, University of Indonesia, Jl. Salemba Raya, 10430, Central Jakarta, Indonesia – sequence: 8 givenname: Endang Winiati surname: Bachtiar fullname: Bachtiar, Endang Winiati organization: Oral Science Laboratory, Department of Dentistry, University of Indonesia, Jl. Salemba Raya, 10430, Central Jakarta, Indonesia – sequence: 9 givenname: Kamarza surname: Mulia fullname: Mulia, Kamarza organization: Department of Chemical Engineering, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia – sequence: 10 givenname: Mohammad surname: Nasikin fullname: Nasikin, Mohammad organization: Department of Chemical Engineering, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia – sequence: 11 givenname: Hideaki surname: Kagami fullname: Kagami, Hideaki organization: Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan – sequence: 12 givenname: Xianqi surname: Li fullname: Li, Xianqi organization: Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, 1780 Hirookagobara, Shiojiri, Nagano-Prefecture, 399-0704, Japan – sequence: 13 givenname: Etik surname: Mardliyati fullname: Mardliyati, Etik organization: Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application of Technology (BPPT), PUSPIPTEK Area, 15314, Tangerang Selatan, Indonesia – sequence: 14 givenname: Nurul Taufiqu surname: Rochman fullname: Rochman, Nurul Taufiqu organization: Research Center for Physics, Indonesian Institute of Science (LIPI), PUSPIPTEK Area, 15314, Tangerang Selatan, Indonesia – sequence: 15 givenname: Tokiko surname: Nagamura-Inoue fullname: Nagamura-Inoue, Tokiko organization: Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan – sequence: 16 givenname: Arinobu surname: Tojo fullname: Tojo, Arinobu organization: Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan |
BookMark | eNqNksFrFDEUxoNUbK39BzzN0cuuSSbJZkAEKVULhV4qegtvkje7WWaTMclW-t-b7axgPRRPCS_v-_G9vO81OQkxICFvGV0yytT77bIvCZecsm6JlLaSviBnnDO5oGz14-Sv-ym5yHlLKWWtoFJ1r8hpy1oqKuaMfL8KGwgWXdNXfpNwjQETFB9DY2GC3o--PDRxaOzGl5ghNHmKYY2NjVCq7Jcvm-bO3_ImQIgTpOLtiPkNeTnAmPHieJ6Tb5-v7i6_Lm5uv1xffrpZWCEUXTg3MMYVtB3oFXYgdbcSzPJOCOksrQXse-4kE0yCprIXUgitcGjdoG3v2nNyPXNdhK2Zkt9BejARvHksxLQ2R0tmEHolHKhW9YMAYUEPcuBYHaBzCnllfZxZ077fobMYSoLxCfTpS_Abs473RimqpGor4N0RkOLPPeZidj5bHEcIGPfZcK6Vllxq_R-tUjPJte5qq55bbYo5JxyM9eVxQ9WEHw2j5pAIszWHRJhDIsyciCrl_0j_DPOs6MMswrq3e4_JZOvxkBGf0Jb6sf45-W_OBtHx |
CitedBy_id | crossref_primary_10_1016_j_engreg_2020_05_003 crossref_primary_10_4103_jispcd_JISPCD_163_21 crossref_primary_10_1007_s40242_024_4135_0 crossref_primary_10_1039_C9NJ05118J crossref_primary_10_3390_polym12040792 crossref_primary_10_1039_D1QM00851J crossref_primary_10_3390_molecules26206315 crossref_primary_10_4103_japtr_JAPTR_95_20 crossref_primary_10_1049_nbt2_12085 crossref_primary_10_3390_polym12081758 crossref_primary_10_2174_0113852728304647240426201554 crossref_primary_10_3390_ma14112905 crossref_primary_10_3389_fchem_2022_1051678 crossref_primary_10_1016_j_chroma_2020_461198 crossref_primary_10_1016_j_matchemphys_2019_122579 crossref_primary_10_1039_D3MA00422H crossref_primary_10_1002_jbm_b_34688 crossref_primary_10_1080_03639045_2022_2135729 crossref_primary_10_1039_D4RA01594K crossref_primary_10_3390_ijms252413467 crossref_primary_10_1002_biot_201900171 crossref_primary_10_1007_s41061_022_00364_y crossref_primary_10_1016_j_jmrt_2021_08_083 crossref_primary_10_3389_fbioe_2024_1342340 crossref_primary_10_61186_umj_34_12_742 crossref_primary_10_3390_coatings11050512 crossref_primary_10_1016_j_ijbiomac_2025_140315 crossref_primary_10_3390_pharmaceutics13070979 crossref_primary_10_1016_j_msec_2020_111366 crossref_primary_10_1021_acsomega_0c02984 crossref_primary_10_3390_polym12122881 |
Cites_doi | 10.3109/03008207.2014.923878 10.1007/s11154-014-9307-7 10.1016/j.apsusc.2015.04.142 10.1021/jm030267j 10.1016/j.carbpol.2016.09.051 10.2174/1874325000802010103 10.1016/j.jhazmat.2014.08.073 10.1016/j.actbio.2014.11.010 10.1016/j.matpr.2017.01.101 10.1016/j.jfda.2014.10.008 10.1021/cr0500535 10.1016/j.matdes.2015.06.105 10.1002/app.41719 10.1016/j.ceramint.2014.01.044 10.15376/biores.11.2.4605-4620 10.1557/jmr.2016.64 10.1021/es204168d 10.1016/j.msec.2015.07.016 10.1016/j.msec.2017.03.302 10.1016/S1369-7021(11)70058-X 10.1002/(SICI)1097-4636(2000)53:1<28::AID-JBM4>3.0.CO;2-F 10.1016/j.matchemphys.2014.11.002 10.1016/j.carbpol.2016.05.006 10.1016/j.compositesa.2016.11.012 10.1039/C4CS00330F 10.1016/j.eurpolymj.2012.12.009 10.1016/j.msec.2015.05.072 10.1002/jbm.a.31396 10.1016/S1872-2067(15)60999-8 10.1021/acsami.5b00210 10.1016/j.surfcoat.2015.06.042 10.3390/md13041819 10.1002/adma.201403354 10.1016/j.tibtech.2012.02.005 10.1088/0957-4484/26/6/062002 10.1016/j.mssp.2015.07.052 10.1002/jbmr.226 10.1016/j.compositesa.2015.05.027 10.1210/me.2002-0122 10.1016/j.conbuildmat.2015.07.124 10.1002/jbm.a.20039 10.1016/j.actbio.2013.07.003 10.1002/app.43523 10.1242/jcs.150227 |
ContentType | Journal Article |
Copyright | 2019 The Authors 2019 The Authors 2019 |
Copyright_xml | – notice: 2019 The Authors – notice: 2019 The Authors 2019 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.btre.2019.e00350 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2215-017X |
ExternalDocumentID | oai_doaj_org_article_f4874da636bf4a4ca8f5f2edf1edd6e2 PMC6606563 10_1016_j_btre_2019_e00350 S2215017X19300815 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 NCXOZ O9- OK1 RIG ROL RPM SSZ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4460-ddf1126a39a87e9a589741c29445dc09a5ebb2d51415a805b454486ef3df8cbd3 |
IEDL.DBID | IXB |
ISSN | 2215-017X |
IngestDate | Wed Aug 27 01:27:50 EDT 2025 Thu Aug 21 13:29:40 EDT 2025 Fri Jul 11 10:35:31 EDT 2025 Fri Jul 11 01:34:20 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Tue Jul 01 03:48:13 EDT 2025 Tue Jul 25 21:04:19 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sponges Chitosan Bone regeneration Tissue engineering TiO2 nanoparticles |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4460-ddf1126a39a87e9a589741c29445dc09a5ebb2d51415a805b454486ef3df8cbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2215017X19300815 |
PMID | 31304101 |
PQID | 2258152889 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f4874da636bf4a4ca8f5f2edf1edd6e2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6606563 proquest_miscellaneous_2286852588 proquest_miscellaneous_2258152889 crossref_citationtrail_10_1016_j_btre_2019_e00350 crossref_primary_10_1016_j_btre_2019_e00350 elsevier_sciencedirect_doi_10_1016_j_btre_2019_e00350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Biotechnology reports (Amsterdam, Netherlands) |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ferraris, Bobbio, Miola, Spriano (bib0070) 2015; 276 Lu, Gao, He, Wu, Liang, Yang, Chen (bib0105) 2017; 156 Lu, Yuan, Qin, Cao, Xie, Dallas, McKee, Drezner, Bonewald, Feng (bib0240) 2011; 26 Wang, Xian, Li (bib0080) 2015; 76 Kale, Wiener, Militky, Rwawiire, Mishra, Jacob, Wang (bib0025) 2016; 150 Prasad, Sankar, Katiyar (bib0190) 2017; 4 Kim, Mooney (bib0155) 2000; 122 Padovano, Ramachandran, Bahmanyar, Ravindran, George (bib0235) 2014; 55 Weir, Westerhoff, Fabricius, von Goetz (bib0005) 2012; 46 Pinto, Bernardo, Amaro, Lopes (bib0090) 2015; 95 Jiang, Deng, James, Nair, Laurencin (bib0145) 2014; 10 Taherkhani, Moztarzadeh (bib0180) 2016; 133 Wu, Zhou, Tuo, Wang, Huang, Huang, Shen (bib0045) 2015; 149 Izquierdo, Garcia-Giralt, Rodriguez, Cáceres, García (bib0160) 2008; 85 O’Brien (bib0165) 2011; 14 Africa (bib0100) 2017; vol. 4 Schardosim, Soulié, Poquillon, Cazalbou, Duployer, Tenailleau, Rey, Hübler, Combes (bib0175) 2017; 77 Kato, Nakamura, Nishiguchi, Matsusue, Kobayashi, Miyazaki, Kim, Kokubo (bib0225) 2000; 53 Wang, Jiang, Wan, Zhao, Jiang, Wang, Wang (bib0050) 2015; 13 Wei, Karsenty (bib0245) 2015; 16 Tadashi, Hiroaki (bib0230) 2007 Huang, Hsiao, Wu, Shen, Liu, Wang, Chen, Huang, del Alamo, Chang, Tang, Khoo, Kuo (bib0265) 2014; 127 Ahmad, Mohsin, Ahmad, Sardar (bib0015) 2014; 283 Lu, Hu (bib0040) 2016; 11 Ikono, Mardliyati, Agustin, Ulfi, Andrianto, Hasanah, Bachtiar, Mardianingsih, Bachtiar, Maulana, Rochman, Li, Kagami, Nagamura-Inoue, Tojo (bib0135) 2019; 4 Chen, Mao (bib0205) 2007; 107 Rodríguez-Vázquez, Vega-Ruiz, Ramos-Zúñiga, Saldaña-Koppel, Quiñones-Olvera (bib0110) 2015 Mukherjee, Ruan, Liberman, White, Moradian-Oldak (bib0120) 2016; 31 Yunus Basha, Sampath, Doble (bib0185) 2015; 57 Kulkarni, Mazare, Gongadze, Perutkova, Kralj-Iglic, Milošev, Schmuki, Iglič, Mozetič (bib0195) 2015; 26 Croisier, Jérôme (bib0115) 2013; 49 Mohammadi, Hesaraki, Hafezi-Ardakani (bib0210) 2014; 40 Qi, Pei, Zhu, Du, Xin, Zhao, Li, Zhu (bib0075) 2017; 7 Breuls, Jiya, Smit (bib0150) 2008; 2 Shen, Hovhannisyan, Lian, Montecino, Stein, Stein, Van Wijnen (bib0250) 2003; 17 Chen, Liu, Huang (bib0020) 2015; 44 Li, Cui, Liu, Sun, Yu, Fan, Feng, Cui, Watari (bib0055) 2013 Cano, Pollet, Avérous, Tercjak (bib0200) 2017; 93 Elgadir, Uddin, Ferdosh, Adam, Chowdhury, Sarker (bib0125) 2015; 23 Wu, Weng, Liu, Yeung, Chu (bib0255) 2014; 24 Brammer, Frandsen, Jin (bib0215) 2012; 30 Fagan, McCormack, Dionysiou, Pillai (bib0030) 2016; 42 Serra, Fradique, Vallejo, Correia, Miguel, Correia (bib0130) 2015; 55 Vieth, Siegel, Higgs, Watson, Robertson, Savin, Durst, Hipskind (bib0170) 2004; 47 Jorfi, Foster (bib0095) 2015; 132 Pina, Oliveira, Reis (bib0140) 2015; 27 Wang, Liu, Li, Huang, Xu, Hong, Shen (bib0035) 2010; 4 Díez-Pascual, Díez-Vicente (bib0065) 2015; 7 Durgalakshmi, Rakkesh, Balakumar (bib0060) 2015; 349 Syzmanska, Winnicka (bib0260) 2015; 13 Wen, Li, Liu, Fang, Xie, Xu (bib0010) 2015; 36 Nishiguchi, Fujibayashi, Kim, Kokubo, Nakamura (bib0220) 2003; 67A Foruzanmehr, Vuillaume, Robert, Elkoun (bib0085) 2015; 85 Huang (10.1016/j.btre.2019.e00350_bib0265) 2014; 127 Brammer (10.1016/j.btre.2019.e00350_bib0215) 2012; 30 Wu (10.1016/j.btre.2019.e00350_bib0255) 2014; 24 Chen (10.1016/j.btre.2019.e00350_bib0205) 2007; 107 Wei (10.1016/j.btre.2019.e00350_bib0245) 2015; 16 Jorfi (10.1016/j.btre.2019.e00350_bib0095) 2015; 132 Breuls (10.1016/j.btre.2019.e00350_bib0150) 2008; 2 Africa (10.1016/j.btre.2019.e00350_bib0100) 2017; vol. 4 Ferraris (10.1016/j.btre.2019.e00350_bib0070) 2015; 276 Izquierdo (10.1016/j.btre.2019.e00350_bib0160) 2008; 85 Fagan (10.1016/j.btre.2019.e00350_bib0030) 2016; 42 Prasad (10.1016/j.btre.2019.e00350_bib0190) 2017; 4 Li (10.1016/j.btre.2019.e00350_bib0055) 2013 Vieth (10.1016/j.btre.2019.e00350_bib0170) 2004; 47 Kale (10.1016/j.btre.2019.e00350_bib0025) 2016; 150 Díez-Pascual (10.1016/j.btre.2019.e00350_bib0065) 2015; 7 Shen (10.1016/j.btre.2019.e00350_bib0250) 2003; 17 Wang (10.1016/j.btre.2019.e00350_bib0050) 2015; 13 Pinto (10.1016/j.btre.2019.e00350_bib0090) 2015; 95 Wang (10.1016/j.btre.2019.e00350_bib0080) 2015; 76 Mukherjee (10.1016/j.btre.2019.e00350_bib0120) 2016; 31 Wang (10.1016/j.btre.2019.e00350_bib0035) 2010; 4 Taherkhani (10.1016/j.btre.2019.e00350_bib0180) 2016; 133 Cano (10.1016/j.btre.2019.e00350_bib0200) 2017; 93 Weir (10.1016/j.btre.2019.e00350_bib0005) 2012; 46 Yunus Basha (10.1016/j.btre.2019.e00350_bib0185) 2015; 57 Lu (10.1016/j.btre.2019.e00350_bib0040) 2016; 11 Pina (10.1016/j.btre.2019.e00350_bib0140) 2015; 27 Serra (10.1016/j.btre.2019.e00350_bib0130) 2015; 55 Syzmanska (10.1016/j.btre.2019.e00350_bib0260) 2015; 13 O’Brien (10.1016/j.btre.2019.e00350_bib0165) 2011; 14 Wen (10.1016/j.btre.2019.e00350_bib0010) 2015; 36 Elgadir (10.1016/j.btre.2019.e00350_bib0125) 2015; 23 Chen (10.1016/j.btre.2019.e00350_bib0020) 2015; 44 Kulkarni (10.1016/j.btre.2019.e00350_bib0195) 2015; 26 Tadashi (10.1016/j.btre.2019.e00350_bib0230) 2007 Wu (10.1016/j.btre.2019.e00350_bib0045) 2015; 149 Lu (10.1016/j.btre.2019.e00350_bib0240) 2011; 26 Lu (10.1016/j.btre.2019.e00350_bib0105) 2017; 156 Mohammadi (10.1016/j.btre.2019.e00350_bib0210) 2014; 40 Nishiguchi (10.1016/j.btre.2019.e00350_bib0220) 2003; 67A Ikono (10.1016/j.btre.2019.e00350_bib0135) 2019; 4 Schardosim (10.1016/j.btre.2019.e00350_bib0175) 2017; 77 Ahmad (10.1016/j.btre.2019.e00350_bib0015) 2014; 283 Durgalakshmi (10.1016/j.btre.2019.e00350_bib0060) 2015; 349 Kim (10.1016/j.btre.2019.e00350_bib0155) 2000; 122 Kato (10.1016/j.btre.2019.e00350_bib0225) 2000; 53 Rodríguez-Vázquez (10.1016/j.btre.2019.e00350_bib0110) 2015 Jiang (10.1016/j.btre.2019.e00350_bib0145) 2014; 10 Padovano (10.1016/j.btre.2019.e00350_bib0235) 2014; 55 Croisier (10.1016/j.btre.2019.e00350_bib0115) 2013; 49 Foruzanmehr (10.1016/j.btre.2019.e00350_bib0085) 2015; 85 Qi (10.1016/j.btre.2019.e00350_bib0075) 2017; 7 |
References_xml | – volume: 67A start-page: 1305 year: 2003 end-page: 1309 ident: bib0220 article-title: Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid publication-title: J. Biomed. Mater. Res. – volume: 44 start-page: 1861 year: 2015 end-page: 1885 ident: bib0020 article-title: Black titanium dioxide (TiO publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1632 year: 2014 end-page: 1645 ident: bib0145 article-title: Micro- and nanofabrication of chitosan structures for regenerative engineering publication-title: Acta Biomater. – volume: 26 start-page: 1 year: 2015 end-page: 18 ident: bib0195 article-title: Titanium nanostructures for biomedical applications publication-title: Nanotechnology – volume: 23 start-page: 619 year: 2015 end-page: 629 ident: bib0125 article-title: Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review publication-title: J. Food Drug Anal. – volume: 13 start-page: 1819 year: 2015 end-page: 1846 ident: bib0260 article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications publication-title: Mar. Drugs – volume: 107 start-page: 2891 year: 2007 end-page: 2959 ident: bib0205 article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications publication-title: Chem. Rev. – volume: 13 start-page: 354 year: 2015 end-page: 363 ident: bib0050 article-title: Potential application of functional porous TiO publication-title: Acta Biomater. – volume: 47 start-page: 224 year: 2004 end-page: 232 ident: bib0170 article-title: Characteristic physical properties and structural fragments of marketed oral drugs publication-title: J. Med. Chem. – volume: 55 start-page: 121 year: 2014 end-page: 124 ident: bib0235 article-title: Bone-specific overexpression of DMP1 influences osteogenic gene expression during endochonral and intramembranous ossification publication-title: Connect. Tissue Res. – volume: 95 start-page: 506 year: 2015 end-page: 524 ident: bib0090 article-title: Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement - a review publication-title: Constr. Build. Mater. – volume: 4 start-page: 898 year: 2017 end-page: 907 ident: bib0190 article-title: State of art on solvent casting particulate leaching method for orthopedic Scaffolds fabrication publication-title: Mater. Today Proc. – volume: 127 start-page: 4186 year: 2014 end-page: 4200 ident: bib0265 article-title: GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment publication-title: J. Cell. Sci. – volume: 149 start-page: 522 year: 2015 end-page: 529 ident: bib0045 article-title: A transparent CNTs/TiO publication-title: Mater. Chem. Phys. – volume: 85 start-page: 25 year: 2008 end-page: 35 ident: bib0160 article-title: J.L. Gómez Ribelles, M. Monleón, J.C. Monllau, J. Suay, Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering publication-title: J. Biomed. Mater. Res. - Part A. – volume: 40 start-page: 8377 year: 2014 end-page: 8387 ident: bib0210 article-title: Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica publication-title: Ceram. Int. – volume: 276 start-page: 374 year: 2015 end-page: 383 ident: bib0070 article-title: Micro- and nano-textured, hydrophilic and bioactive titanium dental implants publication-title: Surf. Coatings Technol. – start-page: 97 year: 2007 end-page: 108 ident: bib0230 article-title: Chapter 7: simulated body fluid (SBF) as a standard tool to test the bioactivity of implants publication-title: Handbook of Biomineralization – volume: 49 start-page: 780 year: 2013 end-page: 792 ident: bib0115 article-title: Chitosan-based biomaterials for tissue engineering publication-title: Eur. Polym. J. – volume: 57 start-page: 452 year: 2015 end-page: 463 ident: bib0185 article-title: Design of biocomposite materials for bone tissue regeneration publication-title: Mater. Sci. Eng. C – volume: 30 start-page: 315 year: 2012 end-page: 322 ident: bib0215 article-title: TiO2 nanotubes for bone regeneration publication-title: Trends Biotechnol. – volume: 132 start-page: 1 year: 2015 end-page: 19 ident: bib0095 article-title: Recent advances in nanocellulose for biomedical applications publication-title: J. Appl. Polym. Sci. – volume: 36 start-page: 2049 year: 2015 end-page: 2070 ident: bib0010 article-title: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials publication-title: Chin. J. Catal. – volume: 4 start-page: 1166 year: 2010 end-page: 1169 ident: bib0035 article-title: Multifunctional TiO publication-title: Optoelectron. Adv. Mater. Rapid Commun. – volume: 7 start-page: 5561 year: 2015 end-page: 5573 ident: bib0065 article-title: Nano-TiO publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 88 year: 2011 end-page: 95 ident: bib0165 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today – volume: 26 start-page: 331 year: 2011 end-page: 340 ident: bib0240 article-title: The biological function of DMP1 in Osteocyte Maturation is mediated by its 57-kDa C-terminal fragment publication-title: J. Bone Miner. Res. – year: 2015 ident: bib0110 article-title: Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine publication-title: Biomed Res. Int. – volume: 122 start-page: 210 year: 2000 end-page: 215 ident: bib0155 article-title: Scaffolds for engineering smooth publication-title: Scanning – volume: 2 start-page: 103 year: 2008 end-page: 109 ident: bib0150 article-title: Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering publication-title: Open Orthop. J. – start-page: 1 year: 2013 end-page: 16 ident: bib0055 article-title: The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials publication-title: J. Nanomater. – volume: 85 start-page: 671 year: 2015 end-page: 678 ident: bib0085 article-title: The effect of grafting a nano-TiO publication-title: Mater. Des. – volume: 4 year: 2019 ident: bib0135 article-title: Chitosan—PRP nanosphere as a growth factors slow releasing device with superior antibacterial capability publication-title: Biomed. Phys. Eng. Exp. – volume: 46 start-page: 2242 year: 2012 end-page: 2250 ident: bib0005 article-title: Titanium dioxide nanoparticles in food and personal care products publication-title: Environ. Sci. Technol. – volume: 11 start-page: 4605 year: 2016 end-page: 4620 ident: bib0040 article-title: Layer-by-layer deposition of TiO publication-title: BioResources – volume: 349 start-page: 561 year: 2015 end-page: 569 ident: bib0060 article-title: Stacked Bioglass/TiO publication-title: Appl. Surf. Sci. – volume: vol. 4 start-page: 411 year: 2017 end-page: 427 ident: bib0100 publication-title: HHS Public Access – volume: 31 start-page: 556 year: 2016 end-page: 563 ident: bib0120 article-title: Repairing human tooth enamel with leucine-rich amelogenin peptide-chitosan hydrogel publication-title: J. Mater. Res. – volume: 24 year: 2014 ident: bib0255 article-title: Functionalized TiO2 based nanomaterials for biomedical applications publication-title: Adv. Funct. Mater. – volume: 76 start-page: 172 year: 2015 end-page: 180 ident: bib0080 article-title: Grafting of nano-TiO publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 93 start-page: 33 year: 2017 end-page: 40 ident: bib0200 article-title: Effect of TiO publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 55 start-page: 592 year: 2015 end-page: 604 ident: bib0130 article-title: Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration publication-title: Mater. Sci. Eng. C – volume: 17 start-page: 743 year: 2003 end-page: 756 ident: bib0250 article-title: Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones H3 and H4 publication-title: Mol. Endocrinol. – volume: 16 start-page: 93 year: 2015 end-page: 98 ident: bib0245 article-title: An overview of the metabolic functions of osteocalcin publication-title: Rev. Endocr. Metab. Disord. – volume: 7 start-page: 2 year: 2017 end-page: 13 ident: bib0075 article-title: Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo publication-title: Sci. Rep. – volume: 77 start-page: 731 year: 2017 end-page: 738 ident: bib0175 article-title: Freeze-casting for PLGA/carbonated apatite composite scaffolds: structure and properties publication-title: Mater. Sci. Eng. C – volume: 283 start-page: 171 year: 2014 end-page: 177 ident: bib0015 article-title: Alpha amylase assisted synthesis of TiO publication-title: J. Hazard. Mater. – volume: 42 start-page: 2 year: 2016 end-page: 14 ident: bib0030 article-title: A review of solar and visible light active TiO publication-title: Mater. Sci. Semicond. Process. – volume: 156 start-page: 460 year: 2017 end-page: 469 ident: bib0105 article-title: Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing publication-title: Carbohydr. Polym. – volume: 133 start-page: 19 year: 2016 end-page: 21 ident: bib0180 article-title: Fabrication of a poly(ε-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue engineering applications publication-title: J. Appl. Polym. Sci. – volume: 150 start-page: 107 year: 2016 end-page: 113 ident: bib0025 article-title: Coating of cellulose-TiO publication-title: Carbohydr. Polym. – volume: 27 start-page: 1143 year: 2015 end-page: 1169 ident: bib0140 article-title: Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review publication-title: Adv. Mater. – volume: 53 start-page: 28 year: 2000 end-page: 35 ident: bib0225 article-title: Bonding of alkali- and heat-treated tantalum implants to bone publication-title: J. Biomed. Mater. Res. Appl. Biomater. – volume: 55 start-page: 121 year: 2014 ident: 10.1016/j.btre.2019.e00350_bib0235 article-title: Bone-specific overexpression of DMP1 influences osteogenic gene expression during endochonral and intramembranous ossification publication-title: Connect. Tissue Res. doi: 10.3109/03008207.2014.923878 – volume: 7 start-page: 2 year: 2017 ident: 10.1016/j.btre.2019.e00350_bib0075 article-title: Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo publication-title: Sci. Rep. – volume: 16 start-page: 93 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0245 article-title: An overview of the metabolic functions of osteocalcin publication-title: Rev. Endocr. Metab. Disord. doi: 10.1007/s11154-014-9307-7 – volume: 349 start-page: 561 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0060 article-title: Stacked Bioglass/TiO2 nanocoatings on titanium substrate for enhanced osseointegration and its electrochemical corrosion studies publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.04.142 – volume: 122 start-page: 210 year: 2000 ident: 10.1016/j.btre.2019.e00350_bib0155 article-title: Scaffolds for engineering smooth publication-title: Scanning – volume: 47 start-page: 224 year: 2004 ident: 10.1016/j.btre.2019.e00350_bib0170 article-title: Characteristic physical properties and structural fragments of marketed oral drugs publication-title: J. Med. Chem. doi: 10.1021/jm030267j – volume: 156 start-page: 460 year: 2017 ident: 10.1016/j.btre.2019.e00350_bib0105 article-title: Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.09.051 – volume: 2 start-page: 103 year: 2008 ident: 10.1016/j.btre.2019.e00350_bib0150 article-title: Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering publication-title: Open Orthop. J. doi: 10.2174/1874325000802010103 – volume: 283 start-page: 171 year: 2014 ident: 10.1016/j.btre.2019.e00350_bib0015 article-title: Alpha amylase assisted synthesis of TiO2 nanoparticles: structural characterization and application as antibacterial agents publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.08.073 – volume: 13 start-page: 354 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0050 article-title: Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.11.010 – volume: 4 start-page: 898 year: 2017 ident: 10.1016/j.btre.2019.e00350_bib0190 article-title: State of art on solvent casting particulate leaching method for orthopedic Scaffolds fabrication publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2017.01.101 – start-page: 1 issue: 2013 year: 2013 ident: 10.1016/j.btre.2019.e00350_bib0055 article-title: The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials publication-title: J. Nanomater. – volume: 23 start-page: 619 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0125 article-title: Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review publication-title: J. Food Drug Anal. doi: 10.1016/j.jfda.2014.10.008 – volume: 107 start-page: 2891 year: 2007 ident: 10.1016/j.btre.2019.e00350_bib0205 article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications publication-title: Chem. Rev. doi: 10.1021/cr0500535 – volume: 85 start-page: 671 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0085 article-title: The effect of grafting a nano-TiO2thin film on physical and mechanical properties of cellulosic natural fibers publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.06.105 – volume: 132 start-page: 1 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0095 article-title: Recent advances in nanocellulose for biomedical applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41719 – volume: 40 start-page: 8377 year: 2014 ident: 10.1016/j.btre.2019.e00350_bib0210 article-title: Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.01.044 – volume: 11 start-page: 4605 year: 2016 ident: 10.1016/j.btre.2019.e00350_bib0040 article-title: Layer-by-layer deposition of TiO2 nanoparticles in the wood surface and its superhydrophobic performance publication-title: BioResources doi: 10.15376/biores.11.2.4605-4620 – volume: 24 year: 2014 ident: 10.1016/j.btre.2019.e00350_bib0255 article-title: Functionalized TiO2 based nanomaterials for biomedical applications publication-title: Adv. Funct. Mater. – volume: 31 start-page: 556 year: 2016 ident: 10.1016/j.btre.2019.e00350_bib0120 article-title: Repairing human tooth enamel with leucine-rich amelogenin peptide-chitosan hydrogel publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.64 – volume: 46 start-page: 2242 year: 2012 ident: 10.1016/j.btre.2019.e00350_bib0005 article-title: Titanium dioxide nanoparticles in food and personal care products publication-title: Environ. Sci. Technol. doi: 10.1021/es204168d – volume: 57 start-page: 452 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0185 article-title: Design of biocomposite materials for bone tissue regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.07.016 – volume: 77 start-page: 731 year: 2017 ident: 10.1016/j.btre.2019.e00350_bib0175 article-title: Freeze-casting for PLGA/carbonated apatite composite scaffolds: structure and properties publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.03.302 – volume: 14 start-page: 88 year: 2011 ident: 10.1016/j.btre.2019.e00350_bib0165 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70058-X – volume: 53 start-page: 28 year: 2000 ident: 10.1016/j.btre.2019.e00350_bib0225 article-title: Bonding of alkali- and heat-treated tantalum implants to bone publication-title: J. Biomed. Mater. Res. Appl. Biomater. doi: 10.1002/(SICI)1097-4636(2000)53:1<28::AID-JBM4>3.0.CO;2-F – volume: 149 start-page: 522 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0045 article-title: A transparent CNTs/TiO2 composite film with superhydrophobic and photocatalytic functions self-assembled by liquid-phase deposition publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.11.002 – issue: 2015 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0110 article-title: Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine publication-title: Biomed Res. Int. – volume: 150 start-page: 107 year: 2016 ident: 10.1016/j.btre.2019.e00350_bib0025 article-title: Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.05.006 – volume: 4 issue: 4 year: 2019 ident: 10.1016/j.btre.2019.e00350_bib0135 article-title: Chitosan—PRP nanosphere as a growth factors slow releasing device with superior antibacterial capability publication-title: Biomed. Phys. Eng. Exp. – volume: 93 start-page: 33 year: 2017 ident: 10.1016/j.btre.2019.e00350_bib0200 article-title: Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.11.012 – volume: 44 start-page: 1861 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0020 article-title: Black titanium dioxide (TiO2) nanomaterials publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00330F – volume: 49 start-page: 780 year: 2013 ident: 10.1016/j.btre.2019.e00350_bib0115 article-title: Chitosan-based biomaterials for tissue engineering publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2012.12.009 – volume: 55 start-page: 592 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0130 article-title: Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.05.072 – volume: 85 start-page: 25 year: 2008 ident: 10.1016/j.btre.2019.e00350_bib0160 article-title: J.L. Gómez Ribelles, M. Monleón, J.C. Monllau, J. Suay, Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering publication-title: J. Biomed. Mater. Res. - Part A. doi: 10.1002/jbm.a.31396 – volume: 36 start-page: 2049 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0010 article-title: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)60999-8 – volume: 7 start-page: 5561 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0065 article-title: Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00210 – volume: 276 start-page: 374 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0070 article-title: Micro- and nano-textured, hydrophilic and bioactive titanium dental implants publication-title: Surf. Coatings Technol. doi: 10.1016/j.surfcoat.2015.06.042 – volume: 13 start-page: 1819 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0260 article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications publication-title: Mar. Drugs doi: 10.3390/md13041819 – volume: 27 start-page: 1143 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0140 article-title: Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review publication-title: Adv. Mater. doi: 10.1002/adma.201403354 – volume: vol. 4 start-page: 411 year: 2017 ident: 10.1016/j.btre.2019.e00350_bib0100 – volume: 30 start-page: 315 year: 2012 ident: 10.1016/j.btre.2019.e00350_bib0215 article-title: TiO2 nanotubes for bone regeneration publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2012.02.005 – volume: 26 start-page: 1 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0195 article-title: Titanium nanostructures for biomedical applications publication-title: Nanotechnology doi: 10.1088/0957-4484/26/6/062002 – volume: 42 start-page: 2 year: 2016 ident: 10.1016/j.btre.2019.e00350_bib0030 article-title: A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2015.07.052 – start-page: 97 year: 2007 ident: 10.1016/j.btre.2019.e00350_bib0230 article-title: Chapter 7: simulated body fluid (SBF) as a standard tool to test the bioactivity of implants – volume: 26 start-page: 331 year: 2011 ident: 10.1016/j.btre.2019.e00350_bib0240 article-title: The biological function of DMP1 in Osteocyte Maturation is mediated by its 57-kDa C-terminal fragment publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.226 – volume: 76 start-page: 172 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0080 article-title: Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.05.027 – volume: 17 start-page: 743 year: 2003 ident: 10.1016/j.btre.2019.e00350_bib0250 article-title: Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones H3 and H4 publication-title: Mol. Endocrinol. doi: 10.1210/me.2002-0122 – volume: 4 start-page: 1166 year: 2010 ident: 10.1016/j.btre.2019.e00350_bib0035 article-title: Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells publication-title: Optoelectron. Adv. Mater. Rapid Commun. – volume: 95 start-page: 506 year: 2015 ident: 10.1016/j.btre.2019.e00350_bib0090 article-title: Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement - a review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.07.124 – volume: 67A start-page: 1305 year: 2003 ident: 10.1016/j.btre.2019.e00350_bib0220 article-title: Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.20039 – volume: 10 start-page: 1632 year: 2014 ident: 10.1016/j.btre.2019.e00350_bib0145 article-title: Micro- and nanofabrication of chitosan structures for regenerative engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.07.003 – volume: 133 start-page: 19 year: 2016 ident: 10.1016/j.btre.2019.e00350_bib0180 article-title: Fabrication of a poly(ε-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue engineering applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.43523 – volume: 127 start-page: 4186 year: 2014 ident: 10.1016/j.btre.2019.e00350_bib0265 article-title: GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment publication-title: J. Cell. Sci. doi: 10.1242/jcs.150227 |
SSID | ssj0001340569 |
Score | 2.3034246 |
Snippet | •Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.•Nano titanium dioxide addition to the matrix of chitosan... Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and... • Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability. • Nano titanium dioxide addition to the matrix of chitosan... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00350 |
SubjectTerms | apatite biomineralization biotechnology body fluids Bone regeneration bones Chitosan cytotoxicity Fourier transform infrared spectroscopy gene expression regulation genes nanoparticles quantitative polymerase chain reaction Sponges TiO2 nanoparticles Tissue engineering titanium dioxide |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhUBVp1y0NG6q1KG8ePOEdAoBVS28ui7s3yExYhBy3LgX_P2Mmi5LJcuDq2Y48f841n_BmhH6JklDU1KaQUtGBG0kKH2hZWhMrXZWBapMvJf_6K6Q27nvP54KmvFBPW0QN3gvsdAFEzpwUVBgoyq2XgUI0LxDsnfN59QecNjKl8ukIBiOT37CrQaWAv1_P-xkwX3GVWy8SRSZpfPvvWRlopk_ePlNMAfI5DJwe66Ooz-tSDSHzWNX4Pbfm4j3YH1IIH6P9lvMvOfWza6PHS32Z-6TQM2IKCzDGxL7gNODkS2icdcQqWvfXYtgA_HU4HtHi2-FfhqCNY1n0A3Rd0c3U5u5gW_SMKhQVLrywcSIpUQtNGy9o3mkuwIIitGsa4syUkeGMqB7iJcC1LbhgHi034QF2Q1jj6FW1HaOg3hK0xQQsSysoZJg1pbFNJZ2sw43TpqJsgshaisj3DeHro4kGtQ8nuVRK8SoJXneAn6OdbmceOX2Nj7vM0Nm85Ezd2ToAZo3pBqPdmzATx9ciqHmZ08AGqWmz8-el6GihYg8mxoqNvn58U7IkScJCUzaY8UkgOGeUE1aM5NOrN-Etc3GXGbwFmJhf0-0d0_xDtpE51ITlHaHu1fPbHAKxW5iSvoVeKGSSC priority: 102 providerName: Directory of Open Access Journals |
Title | Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles |
URI | https://dx.doi.org/10.1016/j.btre.2019.e00350 https://www.proquest.com/docview/2258152889 https://www.proquest.com/docview/2286852588 https://pubmed.ncbi.nlm.nih.gov/PMC6606563 https://doaj.org/article/f4874da636bf4a4ca8f5f2edf1edd6e2 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAKA-xFCojcUNhk_gR50irVhUScKAVe7P83AYhp9puD_z7zjhJ2Vz2wDHOOHHGk3nY34wJ-ShLznjbVIVSkhXcKlaY2LjCyViHpozcSExO_vZdXl7zryuxOiBnUy4MwipH3T_o9Kytx5blyM3lbdctf9ZgrUCeVuCCoGHDRHPGVU7iW53-W2dh4JLkk-2QvsAOY-7MAPOy2w1Wy6zazyHvss3sUy7jPzNTO27oHES5Y5UunpNnoztJvwwjPiIHIb0gT3eKDL4kv87TTd7mp7ZPgW7COleaxgmhDkxlRsf-pX2kuKXQ35lEETa7DtT14Ih6iku19Kr7UdNkEsTYI5TuFbm-OL86uyzG4xQKBzFfWXgfMV_IsNaoJrRGKIglKle3nAvvSmgI1tYePKhKGFUKywXEbjJE5qNy1rPX5DDBQN8Q6qyNRlaxrL3lylata2vlXQMBnSk98wtSTUzUbqw1jkde_NETqOy3RsZrZLweGL8gnx773A6VNvZSn-LcPFJilezc0G_WemSEjhCNcW8kkxaEjjujogARBD4E72WoF0RMM6tnQgeP6va-_MMkBhr-RtxiMSn093catCNIYq1Uu49GSSWAUC1IM5Oh2dfM76TuJtf-lhBwCsne_ufIj8kTvBrwOO_I4XZzH96DV7W1J3k14iT_PA8VCCP3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFNdnkbihsIm8SPOkVatttCWA1uxN8vPbRBKqu32wL9nxsmWzWUPXJ1x4ozHnm88DxPyUeac8boqMqUky7hVLDOxcpmTsQxVHrmRmJx8fiFnl_zrQiz2yNEmFwbDKoe9v9_T0249tEwHbk6vm2b6owRtBfK0AAiCik3cI_cBDVS4Ok8Xh_8OWhhgknS1HXbIsMeQPNPHedn1CstlFvXnkNxsIwWV6viP9NQWDh1HUW6ppZMn5PGAJ-mXfshPyV5on5FHW1UGn5Ofx-1V8vNT27WBrsIylZrGGaEOdGUKj_1Du0jRp9DdmJZi3OwyUNcBEvUUz2rpvPle0ta0YGQPsXQvyOXJ8fxolg33KWQOjL488z5iwpBhtVFVqI1QYEwUrqw5F97l0BCsLT1AqEIYlQvLBRhvMkTmo3LWs5dkv4WBHhDqrI1GFjEvveXKFrWrS-VdBRadyT3zE1JsmKjdUGwc77z4rTdRZb80Ml4j43XP-An5dNfnui-1sZP6EOfmjhLLZKeGbrXUAyN0BHOMeyOZtCB13BkVBcgg8CF4L0M5IWIzs3okdfCqZufHP2zEQMNyRB-LaUN3e6NhewRRLJWqd9EoqQQQqgmpRjI0-pvxk7a5SsW_JVicQrJX_zny9-TBbH5-ps9OL769Jg_xSR-c84bsr1e34S1ArLV9l5bQX9r9JiI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+bone+regeneration+capability+of+chitosan+sponge+coated+with+TiO2+nanoparticles&rft.jtitle=Biotechnology+reports+%28Amsterdam%2C+Netherlands%29&rft.au=Ikono%2C+Radyum&rft.au=Li%2C+Ni&rft.au=Pratama%2C+Nanda+Hendra&rft.au=Vibriani%2C+Agnia&rft.date=2019-12-01&rft.pub=Elsevier&rft.eissn=2215-017X&rft.volume=24&rft_id=info:doi/10.1016%2Fj.btre.2019.e00350&rft_id=info%3Apmid%2F31304101&rft.externalDocID=PMC6606563 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-017X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-017X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-017X&client=summon |