Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles

•Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.•Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges.•Chitosan – nanoTiO...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology reports (Amsterdam, Netherlands) Vol. 24; p. e00350
Main Authors Ikono, Radyum, Li, Ni, Pratama, Nanda Hendra, Vibriani, Agnia, Yuniarni, Diah Retno, Luthfansyah, Muhammad, Bachtiar, Boy Muchlis, Bachtiar, Endang Winiati, Mulia, Kamarza, Nasikin, Mohammad, Kagami, Hideaki, Li, Xianqi, Mardliyati, Etik, Rochman, Nurul Taufiqu, Nagamura-Inoue, Tokiko, Tojo, Arinobu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.•Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges.•Chitosan – nanoTiO2 scaffold results in significantly improved sponge robustness, biomineralization, and bone regeneration capability, as indicated by DMP1 and OCN gene upregulation in chitosan-50% nanoTiO2 sample. Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering.
AbstractList • Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability. • Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges. • Chitosan – nanoTiO 2 scaffold results in significantly improved sponge robustness, biomineralization, and bone regeneration capability, as indicated by DMP1 and OCN gene upregulation in chitosan-50% nanoTiO 2 sample. Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO 2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO 2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO 2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO 4− band observed in FTIR results. qPCR analysis supported chitosan - TiO 2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO 2 treated group. Finally, cytotoxicity analysis supported the fact that TiO 2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO 2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering.
•Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.•Nano titanium dioxide addition to the matrix of chitosan sponges was done successfully, as depicted from an even distribution of nano titanium dioxide on the surface of the sponges.•Chitosan – nanoTiO2 scaffold results in significantly improved sponge robustness, biomineralization, and bone regeneration capability, as indicated by DMP1 and OCN gene upregulation in chitosan-50% nanoTiO2 sample. Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering.
Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering. Keywords: Bone regeneration, Chitosan, Sponges, TiO2 nanoparticles, Tissue engineering
Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4− band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering.
Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4- band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering.Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and non-osteogenic inductivity. Here we hybridized chitosan with TiO2 nanoparticles to improve its bone regeneration capability. Morphology and crystallographic analysis showed that TiO2 nanoparticles in anatase-type were distributed evenly on the surface of the chitosan sponges. Degradation test showed a significant effect of TiO2 nanoparticles addition in retaining its integrity. Biomineralization assay using simulated body fluid showed apatite formation in sponges surface as denoted by PO4- band observed in FTIR results. qPCR analysis supported chitosan - TiO2 sponges in bone regeneration capability as indicated by DMP1 and OCN gene upregulation in TiO2 treated group. Finally, cytotoxicity analysis supported the fact that TiO2 nanoparticles added sponges were proved to be biocompatible. Results suggest that chitosan-50% TiO2 nanoparticles sponges could be a potential novel scaffold for bone tissue engineering.
ArticleNumber e00350
Author Li, Ni
Kagami, Hideaki
Nagamura-Inoue, Tokiko
Luthfansyah, Muhammad
Mulia, Kamarza
Tojo, Arinobu
Nasikin, Mohammad
Mardliyati, Etik
Rochman, Nurul Taufiqu
Pratama, Nanda Hendra
Bachtiar, Endang Winiati
Ikono, Radyum
Vibriani, Agnia
Yuniarni, Diah Retno
Bachtiar, Boy Muchlis
Li, Xianqi
Author_xml – sequence: 1
  givenname: Radyum
  surname: Ikono
  fullname: Ikono, Radyum
  email: rikono@nano.or.id
  organization: Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia
– sequence: 2
  givenname: Ni
  surname: Li
  fullname: Li, Ni
  organization: Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, 1780 Hirookagobara, Shiojiri, Nagano-Prefecture, 399-0704, Japan
– sequence: 3
  givenname: Nanda Hendra
  surname: Pratama
  fullname: Pratama, Nanda Hendra
  organization: Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia
– sequence: 4
  givenname: Agnia
  surname: Vibriani
  fullname: Vibriani, Agnia
  organization: Department of Biology, Bandung Institute of Technology, Jl. Ganesha No. 10, 40132, Bandung, Indonesia
– sequence: 5
  givenname: Diah Retno
  surname: Yuniarni
  fullname: Yuniarni, Diah Retno
  organization: Department of Chemistry, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia
– sequence: 6
  givenname: Muhammad
  surname: Luthfansyah
  fullname: Luthfansyah, Muhammad
  organization: Division of Bionanotechnology, Nano Center Indonesia, Jl. Raya Serpong, 15310, Tangerang Selatan, Indonesia
– sequence: 7
  givenname: Boy Muchlis
  surname: Bachtiar
  fullname: Bachtiar, Boy Muchlis
  organization: Oral Science Laboratory, Department of Dentistry, University of Indonesia, Jl. Salemba Raya, 10430, Central Jakarta, Indonesia
– sequence: 8
  givenname: Endang Winiati
  surname: Bachtiar
  fullname: Bachtiar, Endang Winiati
  organization: Oral Science Laboratory, Department of Dentistry, University of Indonesia, Jl. Salemba Raya, 10430, Central Jakarta, Indonesia
– sequence: 9
  givenname: Kamarza
  surname: Mulia
  fullname: Mulia, Kamarza
  organization: Department of Chemical Engineering, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia
– sequence: 10
  givenname: Mohammad
  surname: Nasikin
  fullname: Nasikin, Mohammad
  organization: Department of Chemical Engineering, University of Indonesia, Jl. Margonda Raya, 16424, Depok, Indonesia
– sequence: 11
  givenname: Hideaki
  surname: Kagami
  fullname: Kagami, Hideaki
  organization: Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan
– sequence: 12
  givenname: Xianqi
  surname: Li
  fullname: Li, Xianqi
  organization: Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, 1780 Hirookagobara, Shiojiri, Nagano-Prefecture, 399-0704, Japan
– sequence: 13
  givenname: Etik
  surname: Mardliyati
  fullname: Mardliyati, Etik
  organization: Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application of Technology (BPPT), PUSPIPTEK Area, 15314, Tangerang Selatan, Indonesia
– sequence: 14
  givenname: Nurul Taufiqu
  surname: Rochman
  fullname: Rochman, Nurul Taufiqu
  organization: Research Center for Physics, Indonesian Institute of Science (LIPI), PUSPIPTEK Area, 15314, Tangerang Selatan, Indonesia
– sequence: 15
  givenname: Tokiko
  surname: Nagamura-Inoue
  fullname: Nagamura-Inoue, Tokiko
  organization: Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan
– sequence: 16
  givenname: Arinobu
  surname: Tojo
  fullname: Tojo, Arinobu
  organization: Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, 7 Chome-3-1 Hongo, 113-8654, Tokyo, Japan
BookMark eNqNksFrFDEUxoNUbK39BzzN0cuuSSbJZkAEKVULhV4qegtvkje7WWaTMclW-t-b7axgPRRPCS_v-_G9vO81OQkxICFvGV0yytT77bIvCZecsm6JlLaSviBnnDO5oGz14-Sv-ym5yHlLKWWtoFJ1r8hpy1oqKuaMfL8KGwgWXdNXfpNwjQETFB9DY2GC3o--PDRxaOzGl5ghNHmKYY2NjVCq7Jcvm-bO3_ImQIgTpOLtiPkNeTnAmPHieJ6Tb5-v7i6_Lm5uv1xffrpZWCEUXTg3MMYVtB3oFXYgdbcSzPJOCOksrQXse-4kE0yCprIXUgitcGjdoG3v2nNyPXNdhK2Zkt9BejARvHksxLQ2R0tmEHolHKhW9YMAYUEPcuBYHaBzCnllfZxZ077fobMYSoLxCfTpS_Abs473RimqpGor4N0RkOLPPeZidj5bHEcIGPfZcK6Vllxq_R-tUjPJte5qq55bbYo5JxyM9eVxQ9WEHw2j5pAIszWHRJhDIsyciCrl_0j_DPOs6MMswrq3e4_JZOvxkBGf0Jb6sf45-W_OBtHx
CitedBy_id crossref_primary_10_1016_j_engreg_2020_05_003
crossref_primary_10_4103_jispcd_JISPCD_163_21
crossref_primary_10_1007_s40242_024_4135_0
crossref_primary_10_1039_C9NJ05118J
crossref_primary_10_3390_polym12040792
crossref_primary_10_1039_D1QM00851J
crossref_primary_10_3390_molecules26206315
crossref_primary_10_4103_japtr_JAPTR_95_20
crossref_primary_10_1049_nbt2_12085
crossref_primary_10_3390_polym12081758
crossref_primary_10_2174_0113852728304647240426201554
crossref_primary_10_3390_ma14112905
crossref_primary_10_3389_fchem_2022_1051678
crossref_primary_10_1016_j_chroma_2020_461198
crossref_primary_10_1016_j_matchemphys_2019_122579
crossref_primary_10_1039_D3MA00422H
crossref_primary_10_1002_jbm_b_34688
crossref_primary_10_1080_03639045_2022_2135729
crossref_primary_10_1039_D4RA01594K
crossref_primary_10_3390_ijms252413467
crossref_primary_10_1002_biot_201900171
crossref_primary_10_1007_s41061_022_00364_y
crossref_primary_10_1016_j_jmrt_2021_08_083
crossref_primary_10_3389_fbioe_2024_1342340
crossref_primary_10_61186_umj_34_12_742
crossref_primary_10_3390_coatings11050512
crossref_primary_10_1016_j_ijbiomac_2025_140315
crossref_primary_10_3390_pharmaceutics13070979
crossref_primary_10_1016_j_msec_2020_111366
crossref_primary_10_1021_acsomega_0c02984
crossref_primary_10_3390_polym12122881
Cites_doi 10.3109/03008207.2014.923878
10.1007/s11154-014-9307-7
10.1016/j.apsusc.2015.04.142
10.1021/jm030267j
10.1016/j.carbpol.2016.09.051
10.2174/1874325000802010103
10.1016/j.jhazmat.2014.08.073
10.1016/j.actbio.2014.11.010
10.1016/j.matpr.2017.01.101
10.1016/j.jfda.2014.10.008
10.1021/cr0500535
10.1016/j.matdes.2015.06.105
10.1002/app.41719
10.1016/j.ceramint.2014.01.044
10.15376/biores.11.2.4605-4620
10.1557/jmr.2016.64
10.1021/es204168d
10.1016/j.msec.2015.07.016
10.1016/j.msec.2017.03.302
10.1016/S1369-7021(11)70058-X
10.1002/(SICI)1097-4636(2000)53:1<28::AID-JBM4>3.0.CO;2-F
10.1016/j.matchemphys.2014.11.002
10.1016/j.carbpol.2016.05.006
10.1016/j.compositesa.2016.11.012
10.1039/C4CS00330F
10.1016/j.eurpolymj.2012.12.009
10.1016/j.msec.2015.05.072
10.1002/jbm.a.31396
10.1016/S1872-2067(15)60999-8
10.1021/acsami.5b00210
10.1016/j.surfcoat.2015.06.042
10.3390/md13041819
10.1002/adma.201403354
10.1016/j.tibtech.2012.02.005
10.1088/0957-4484/26/6/062002
10.1016/j.mssp.2015.07.052
10.1002/jbmr.226
10.1016/j.compositesa.2015.05.027
10.1210/me.2002-0122
10.1016/j.conbuildmat.2015.07.124
10.1002/jbm.a.20039
10.1016/j.actbio.2013.07.003
10.1002/app.43523
10.1242/jcs.150227
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.btre.2019.e00350
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2215-017X
ExternalDocumentID oai_doaj_org_article_f4874da636bf4a4ca8f5f2edf1edd6e2
PMC6606563
10_1016_j_btre_2019_e00350
S2215017X19300815
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4460-ddf1126a39a87e9a589741c29445dc09a5ebb2d51415a805b454486ef3df8cbd3
IEDL.DBID IXB
ISSN 2215-017X
IngestDate Wed Aug 27 01:27:50 EDT 2025
Thu Aug 21 13:29:40 EDT 2025
Fri Jul 11 10:35:31 EDT 2025
Fri Jul 11 01:34:20 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Tue Jul 01 03:48:13 EDT 2025
Tue Jul 25 21:04:19 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sponges
Chitosan
Bone regeneration
Tissue engineering
TiO2 nanoparticles
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4460-ddf1126a39a87e9a589741c29445dc09a5ebb2d51415a805b454486ef3df8cbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2215017X19300815
PMID 31304101
PQID 2258152889
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f4874da636bf4a4ca8f5f2edf1edd6e2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6606563
proquest_miscellaneous_2286852588
proquest_miscellaneous_2258152889
crossref_citationtrail_10_1016_j_btre_2019_e00350
crossref_primary_10_1016_j_btre_2019_e00350
elsevier_sciencedirect_doi_10_1016_j_btre_2019_e00350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Biotechnology reports (Amsterdam, Netherlands)
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ferraris, Bobbio, Miola, Spriano (bib0070) 2015; 276
Lu, Gao, He, Wu, Liang, Yang, Chen (bib0105) 2017; 156
Lu, Yuan, Qin, Cao, Xie, Dallas, McKee, Drezner, Bonewald, Feng (bib0240) 2011; 26
Wang, Xian, Li (bib0080) 2015; 76
Kale, Wiener, Militky, Rwawiire, Mishra, Jacob, Wang (bib0025) 2016; 150
Prasad, Sankar, Katiyar (bib0190) 2017; 4
Kim, Mooney (bib0155) 2000; 122
Padovano, Ramachandran, Bahmanyar, Ravindran, George (bib0235) 2014; 55
Weir, Westerhoff, Fabricius, von Goetz (bib0005) 2012; 46
Pinto, Bernardo, Amaro, Lopes (bib0090) 2015; 95
Jiang, Deng, James, Nair, Laurencin (bib0145) 2014; 10
Taherkhani, Moztarzadeh (bib0180) 2016; 133
Wu, Zhou, Tuo, Wang, Huang, Huang, Shen (bib0045) 2015; 149
Izquierdo, Garcia-Giralt, Rodriguez, Cáceres, García (bib0160) 2008; 85
O’Brien (bib0165) 2011; 14
Africa (bib0100) 2017; vol. 4
Schardosim, Soulié, Poquillon, Cazalbou, Duployer, Tenailleau, Rey, Hübler, Combes (bib0175) 2017; 77
Kato, Nakamura, Nishiguchi, Matsusue, Kobayashi, Miyazaki, Kim, Kokubo (bib0225) 2000; 53
Wang, Jiang, Wan, Zhao, Jiang, Wang, Wang (bib0050) 2015; 13
Wei, Karsenty (bib0245) 2015; 16
Tadashi, Hiroaki (bib0230) 2007
Huang, Hsiao, Wu, Shen, Liu, Wang, Chen, Huang, del Alamo, Chang, Tang, Khoo, Kuo (bib0265) 2014; 127
Ahmad, Mohsin, Ahmad, Sardar (bib0015) 2014; 283
Lu, Hu (bib0040) 2016; 11
Ikono, Mardliyati, Agustin, Ulfi, Andrianto, Hasanah, Bachtiar, Mardianingsih, Bachtiar, Maulana, Rochman, Li, Kagami, Nagamura-Inoue, Tojo (bib0135) 2019; 4
Chen, Mao (bib0205) 2007; 107
Rodríguez-Vázquez, Vega-Ruiz, Ramos-Zúñiga, Saldaña-Koppel, Quiñones-Olvera (bib0110) 2015
Mukherjee, Ruan, Liberman, White, Moradian-Oldak (bib0120) 2016; 31
Yunus Basha, Sampath, Doble (bib0185) 2015; 57
Kulkarni, Mazare, Gongadze, Perutkova, Kralj-Iglic, Milošev, Schmuki, Iglič, Mozetič (bib0195) 2015; 26
Croisier, Jérôme (bib0115) 2013; 49
Mohammadi, Hesaraki, Hafezi-Ardakani (bib0210) 2014; 40
Qi, Pei, Zhu, Du, Xin, Zhao, Li, Zhu (bib0075) 2017; 7
Breuls, Jiya, Smit (bib0150) 2008; 2
Shen, Hovhannisyan, Lian, Montecino, Stein, Stein, Van Wijnen (bib0250) 2003; 17
Chen, Liu, Huang (bib0020) 2015; 44
Li, Cui, Liu, Sun, Yu, Fan, Feng, Cui, Watari (bib0055) 2013
Cano, Pollet, Avérous, Tercjak (bib0200) 2017; 93
Elgadir, Uddin, Ferdosh, Adam, Chowdhury, Sarker (bib0125) 2015; 23
Wu, Weng, Liu, Yeung, Chu (bib0255) 2014; 24
Brammer, Frandsen, Jin (bib0215) 2012; 30
Fagan, McCormack, Dionysiou, Pillai (bib0030) 2016; 42
Serra, Fradique, Vallejo, Correia, Miguel, Correia (bib0130) 2015; 55
Vieth, Siegel, Higgs, Watson, Robertson, Savin, Durst, Hipskind (bib0170) 2004; 47
Jorfi, Foster (bib0095) 2015; 132
Pina, Oliveira, Reis (bib0140) 2015; 27
Wang, Liu, Li, Huang, Xu, Hong, Shen (bib0035) 2010; 4
Díez-Pascual, Díez-Vicente (bib0065) 2015; 7
Durgalakshmi, Rakkesh, Balakumar (bib0060) 2015; 349
Syzmanska, Winnicka (bib0260) 2015; 13
Wen, Li, Liu, Fang, Xie, Xu (bib0010) 2015; 36
Nishiguchi, Fujibayashi, Kim, Kokubo, Nakamura (bib0220) 2003; 67A
Foruzanmehr, Vuillaume, Robert, Elkoun (bib0085) 2015; 85
Huang (10.1016/j.btre.2019.e00350_bib0265) 2014; 127
Brammer (10.1016/j.btre.2019.e00350_bib0215) 2012; 30
Wu (10.1016/j.btre.2019.e00350_bib0255) 2014; 24
Chen (10.1016/j.btre.2019.e00350_bib0205) 2007; 107
Wei (10.1016/j.btre.2019.e00350_bib0245) 2015; 16
Jorfi (10.1016/j.btre.2019.e00350_bib0095) 2015; 132
Breuls (10.1016/j.btre.2019.e00350_bib0150) 2008; 2
Africa (10.1016/j.btre.2019.e00350_bib0100) 2017; vol. 4
Ferraris (10.1016/j.btre.2019.e00350_bib0070) 2015; 276
Izquierdo (10.1016/j.btre.2019.e00350_bib0160) 2008; 85
Fagan (10.1016/j.btre.2019.e00350_bib0030) 2016; 42
Prasad (10.1016/j.btre.2019.e00350_bib0190) 2017; 4
Li (10.1016/j.btre.2019.e00350_bib0055) 2013
Vieth (10.1016/j.btre.2019.e00350_bib0170) 2004; 47
Kale (10.1016/j.btre.2019.e00350_bib0025) 2016; 150
Díez-Pascual (10.1016/j.btre.2019.e00350_bib0065) 2015; 7
Shen (10.1016/j.btre.2019.e00350_bib0250) 2003; 17
Wang (10.1016/j.btre.2019.e00350_bib0050) 2015; 13
Pinto (10.1016/j.btre.2019.e00350_bib0090) 2015; 95
Wang (10.1016/j.btre.2019.e00350_bib0080) 2015; 76
Mukherjee (10.1016/j.btre.2019.e00350_bib0120) 2016; 31
Wang (10.1016/j.btre.2019.e00350_bib0035) 2010; 4
Taherkhani (10.1016/j.btre.2019.e00350_bib0180) 2016; 133
Cano (10.1016/j.btre.2019.e00350_bib0200) 2017; 93
Weir (10.1016/j.btre.2019.e00350_bib0005) 2012; 46
Yunus Basha (10.1016/j.btre.2019.e00350_bib0185) 2015; 57
Lu (10.1016/j.btre.2019.e00350_bib0040) 2016; 11
Pina (10.1016/j.btre.2019.e00350_bib0140) 2015; 27
Serra (10.1016/j.btre.2019.e00350_bib0130) 2015; 55
Syzmanska (10.1016/j.btre.2019.e00350_bib0260) 2015; 13
O’Brien (10.1016/j.btre.2019.e00350_bib0165) 2011; 14
Wen (10.1016/j.btre.2019.e00350_bib0010) 2015; 36
Elgadir (10.1016/j.btre.2019.e00350_bib0125) 2015; 23
Chen (10.1016/j.btre.2019.e00350_bib0020) 2015; 44
Kulkarni (10.1016/j.btre.2019.e00350_bib0195) 2015; 26
Tadashi (10.1016/j.btre.2019.e00350_bib0230) 2007
Wu (10.1016/j.btre.2019.e00350_bib0045) 2015; 149
Lu (10.1016/j.btre.2019.e00350_bib0240) 2011; 26
Lu (10.1016/j.btre.2019.e00350_bib0105) 2017; 156
Mohammadi (10.1016/j.btre.2019.e00350_bib0210) 2014; 40
Nishiguchi (10.1016/j.btre.2019.e00350_bib0220) 2003; 67A
Ikono (10.1016/j.btre.2019.e00350_bib0135) 2019; 4
Schardosim (10.1016/j.btre.2019.e00350_bib0175) 2017; 77
Ahmad (10.1016/j.btre.2019.e00350_bib0015) 2014; 283
Durgalakshmi (10.1016/j.btre.2019.e00350_bib0060) 2015; 349
Kim (10.1016/j.btre.2019.e00350_bib0155) 2000; 122
Kato (10.1016/j.btre.2019.e00350_bib0225) 2000; 53
Rodríguez-Vázquez (10.1016/j.btre.2019.e00350_bib0110) 2015
Jiang (10.1016/j.btre.2019.e00350_bib0145) 2014; 10
Padovano (10.1016/j.btre.2019.e00350_bib0235) 2014; 55
Croisier (10.1016/j.btre.2019.e00350_bib0115) 2013; 49
Foruzanmehr (10.1016/j.btre.2019.e00350_bib0085) 2015; 85
Qi (10.1016/j.btre.2019.e00350_bib0075) 2017; 7
References_xml – volume: 67A
  start-page: 1305
  year: 2003
  end-page: 1309
  ident: bib0220
  article-title: Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid
  publication-title: J. Biomed. Mater. Res.
– volume: 44
  start-page: 1861
  year: 2015
  end-page: 1885
  ident: bib0020
  article-title: Black titanium dioxide (TiO
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1632
  year: 2014
  end-page: 1645
  ident: bib0145
  article-title: Micro- and nanofabrication of chitosan structures for regenerative engineering
  publication-title: Acta Biomater.
– volume: 26
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib0195
  article-title: Titanium nanostructures for biomedical applications
  publication-title: Nanotechnology
– volume: 23
  start-page: 619
  year: 2015
  end-page: 629
  ident: bib0125
  article-title: Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review
  publication-title: J. Food Drug Anal.
– volume: 13
  start-page: 1819
  year: 2015
  end-page: 1846
  ident: bib0260
  article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications
  publication-title: Mar. Drugs
– volume: 107
  start-page: 2891
  year: 2007
  end-page: 2959
  ident: bib0205
  article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications
  publication-title: Chem. Rev.
– volume: 13
  start-page: 354
  year: 2015
  end-page: 363
  ident: bib0050
  article-title: Potential application of functional porous TiO
  publication-title: Acta Biomater.
– volume: 47
  start-page: 224
  year: 2004
  end-page: 232
  ident: bib0170
  article-title: Characteristic physical properties and structural fragments of marketed oral drugs
  publication-title: J. Med. Chem.
– volume: 55
  start-page: 121
  year: 2014
  end-page: 124
  ident: bib0235
  article-title: Bone-specific overexpression of DMP1 influences osteogenic gene expression during endochonral and intramembranous ossification
  publication-title: Connect. Tissue Res.
– volume: 95
  start-page: 506
  year: 2015
  end-page: 524
  ident: bib0090
  article-title: Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement - a review
  publication-title: Constr. Build. Mater.
– volume: 4
  start-page: 898
  year: 2017
  end-page: 907
  ident: bib0190
  article-title: State of art on solvent casting particulate leaching method for orthopedic Scaffolds fabrication
  publication-title: Mater. Today Proc.
– volume: 127
  start-page: 4186
  year: 2014
  end-page: 4200
  ident: bib0265
  article-title: GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment
  publication-title: J. Cell. Sci.
– volume: 149
  start-page: 522
  year: 2015
  end-page: 529
  ident: bib0045
  article-title: A transparent CNTs/TiO
  publication-title: Mater. Chem. Phys.
– volume: 85
  start-page: 25
  year: 2008
  end-page: 35
  ident: bib0160
  article-title: J.L. Gómez Ribelles, M. Monleón, J.C. Monllau, J. Suay, Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering
  publication-title: J. Biomed. Mater. Res. - Part A.
– volume: 40
  start-page: 8377
  year: 2014
  end-page: 8387
  ident: bib0210
  article-title: Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica
  publication-title: Ceram. Int.
– volume: 276
  start-page: 374
  year: 2015
  end-page: 383
  ident: bib0070
  article-title: Micro- and nano-textured, hydrophilic and bioactive titanium dental implants
  publication-title: Surf. Coatings Technol.
– start-page: 97
  year: 2007
  end-page: 108
  ident: bib0230
  article-title: Chapter 7: simulated body fluid (SBF) as a standard tool to test the bioactivity of implants
  publication-title: Handbook of Biomineralization
– volume: 49
  start-page: 780
  year: 2013
  end-page: 792
  ident: bib0115
  article-title: Chitosan-based biomaterials for tissue engineering
  publication-title: Eur. Polym. J.
– volume: 57
  start-page: 452
  year: 2015
  end-page: 463
  ident: bib0185
  article-title: Design of biocomposite materials for bone tissue regeneration
  publication-title: Mater. Sci. Eng. C
– volume: 30
  start-page: 315
  year: 2012
  end-page: 322
  ident: bib0215
  article-title: TiO2 nanotubes for bone regeneration
  publication-title: Trends Biotechnol.
– volume: 132
  start-page: 1
  year: 2015
  end-page: 19
  ident: bib0095
  article-title: Recent advances in nanocellulose for biomedical applications
  publication-title: J. Appl. Polym. Sci.
– volume: 36
  start-page: 2049
  year: 2015
  end-page: 2070
  ident: bib0010
  article-title: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials
  publication-title: Chin. J. Catal.
– volume: 4
  start-page: 1166
  year: 2010
  end-page: 1169
  ident: bib0035
  article-title: Multifunctional TiO
  publication-title: Optoelectron. Adv. Mater. Rapid Commun.
– volume: 7
  start-page: 5561
  year: 2015
  end-page: 5573
  ident: bib0065
  article-title: Nano-TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 88
  year: 2011
  end-page: 95
  ident: bib0165
  article-title: Biomaterials & scaffolds for tissue engineering
  publication-title: Mater. Today
– volume: 26
  start-page: 331
  year: 2011
  end-page: 340
  ident: bib0240
  article-title: The biological function of DMP1 in Osteocyte Maturation is mediated by its 57-kDa C-terminal fragment
  publication-title: J. Bone Miner. Res.
– year: 2015
  ident: bib0110
  article-title: Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine
  publication-title: Biomed Res. Int.
– volume: 122
  start-page: 210
  year: 2000
  end-page: 215
  ident: bib0155
  article-title: Scaffolds for engineering smooth
  publication-title: Scanning
– volume: 2
  start-page: 103
  year: 2008
  end-page: 109
  ident: bib0150
  article-title: Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering
  publication-title: Open Orthop. J.
– start-page: 1
  year: 2013
  end-page: 16
  ident: bib0055
  article-title: The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials
  publication-title: J. Nanomater.
– volume: 85
  start-page: 671
  year: 2015
  end-page: 678
  ident: bib0085
  article-title: The effect of grafting a nano-TiO
  publication-title: Mater. Des.
– volume: 4
  year: 2019
  ident: bib0135
  article-title: Chitosan—PRP nanosphere as a growth factors slow releasing device with superior antibacterial capability
  publication-title: Biomed. Phys. Eng. Exp.
– volume: 46
  start-page: 2242
  year: 2012
  end-page: 2250
  ident: bib0005
  article-title: Titanium dioxide nanoparticles in food and personal care products
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 4605
  year: 2016
  end-page: 4620
  ident: bib0040
  article-title: Layer-by-layer deposition of TiO
  publication-title: BioResources
– volume: 349
  start-page: 561
  year: 2015
  end-page: 569
  ident: bib0060
  article-title: Stacked Bioglass/TiO
  publication-title: Appl. Surf. Sci.
– volume: vol. 4
  start-page: 411
  year: 2017
  end-page: 427
  ident: bib0100
  publication-title: HHS Public Access
– volume: 31
  start-page: 556
  year: 2016
  end-page: 563
  ident: bib0120
  article-title: Repairing human tooth enamel with leucine-rich amelogenin peptide-chitosan hydrogel
  publication-title: J. Mater. Res.
– volume: 24
  year: 2014
  ident: bib0255
  article-title: Functionalized TiO2 based nanomaterials for biomedical applications
  publication-title: Adv. Funct. Mater.
– volume: 76
  start-page: 172
  year: 2015
  end-page: 180
  ident: bib0080
  article-title: Grafting of nano-TiO
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 93
  start-page: 33
  year: 2017
  end-page: 40
  ident: bib0200
  article-title: Effect of TiO
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 55
  start-page: 592
  year: 2015
  end-page: 604
  ident: bib0130
  article-title: Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration
  publication-title: Mater. Sci. Eng. C
– volume: 17
  start-page: 743
  year: 2003
  end-page: 756
  ident: bib0250
  article-title: Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones H3 and H4
  publication-title: Mol. Endocrinol.
– volume: 16
  start-page: 93
  year: 2015
  end-page: 98
  ident: bib0245
  article-title: An overview of the metabolic functions of osteocalcin
  publication-title: Rev. Endocr. Metab. Disord.
– volume: 7
  start-page: 2
  year: 2017
  end-page: 13
  ident: bib0075
  article-title: Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
  publication-title: Sci. Rep.
– volume: 77
  start-page: 731
  year: 2017
  end-page: 738
  ident: bib0175
  article-title: Freeze-casting for PLGA/carbonated apatite composite scaffolds: structure and properties
  publication-title: Mater. Sci. Eng. C
– volume: 283
  start-page: 171
  year: 2014
  end-page: 177
  ident: bib0015
  article-title: Alpha amylase assisted synthesis of TiO
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 2
  year: 2016
  end-page: 14
  ident: bib0030
  article-title: A review of solar and visible light active TiO
  publication-title: Mater. Sci. Semicond. Process.
– volume: 156
  start-page: 460
  year: 2017
  end-page: 469
  ident: bib0105
  article-title: Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing
  publication-title: Carbohydr. Polym.
– volume: 133
  start-page: 19
  year: 2016
  end-page: 21
  ident: bib0180
  article-title: Fabrication of a poly(ε-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue engineering applications
  publication-title: J. Appl. Polym. Sci.
– volume: 150
  start-page: 107
  year: 2016
  end-page: 113
  ident: bib0025
  article-title: Coating of cellulose-TiO
  publication-title: Carbohydr. Polym.
– volume: 27
  start-page: 1143
  year: 2015
  end-page: 1169
  ident: bib0140
  article-title: Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review
  publication-title: Adv. Mater.
– volume: 53
  start-page: 28
  year: 2000
  end-page: 35
  ident: bib0225
  article-title: Bonding of alkali- and heat-treated tantalum implants to bone
  publication-title: J. Biomed. Mater. Res. Appl. Biomater.
– volume: 55
  start-page: 121
  year: 2014
  ident: 10.1016/j.btre.2019.e00350_bib0235
  article-title: Bone-specific overexpression of DMP1 influences osteogenic gene expression during endochonral and intramembranous ossification
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008207.2014.923878
– volume: 7
  start-page: 2
  year: 2017
  ident: 10.1016/j.btre.2019.e00350_bib0075
  article-title: Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
  publication-title: Sci. Rep.
– volume: 16
  start-page: 93
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0245
  article-title: An overview of the metabolic functions of osteocalcin
  publication-title: Rev. Endocr. Metab. Disord.
  doi: 10.1007/s11154-014-9307-7
– volume: 349
  start-page: 561
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0060
  article-title: Stacked Bioglass/TiO2 nanocoatings on titanium substrate for enhanced osseointegration and its electrochemical corrosion studies
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.04.142
– volume: 122
  start-page: 210
  year: 2000
  ident: 10.1016/j.btre.2019.e00350_bib0155
  article-title: Scaffolds for engineering smooth
  publication-title: Scanning
– volume: 47
  start-page: 224
  year: 2004
  ident: 10.1016/j.btre.2019.e00350_bib0170
  article-title: Characteristic physical properties and structural fragments of marketed oral drugs
  publication-title: J. Med. Chem.
  doi: 10.1021/jm030267j
– volume: 156
  start-page: 460
  year: 2017
  ident: 10.1016/j.btre.2019.e00350_bib0105
  article-title: Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.09.051
– volume: 2
  start-page: 103
  year: 2008
  ident: 10.1016/j.btre.2019.e00350_bib0150
  article-title: Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering
  publication-title: Open Orthop. J.
  doi: 10.2174/1874325000802010103
– volume: 283
  start-page: 171
  year: 2014
  ident: 10.1016/j.btre.2019.e00350_bib0015
  article-title: Alpha amylase assisted synthesis of TiO2 nanoparticles: structural characterization and application as antibacterial agents
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.08.073
– volume: 13
  start-page: 354
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0050
  article-title: Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.11.010
– volume: 4
  start-page: 898
  year: 2017
  ident: 10.1016/j.btre.2019.e00350_bib0190
  article-title: State of art on solvent casting particulate leaching method for orthopedic Scaffolds fabrication
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2017.01.101
– start-page: 1
  issue: 2013
  year: 2013
  ident: 10.1016/j.btre.2019.e00350_bib0055
  article-title: The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials
  publication-title: J. Nanomater.
– volume: 23
  start-page: 619
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0125
  article-title: Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2014.10.008
– volume: 107
  start-page: 2891
  year: 2007
  ident: 10.1016/j.btre.2019.e00350_bib0205
  article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr0500535
– volume: 85
  start-page: 671
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0085
  article-title: The effect of grafting a nano-TiO2thin film on physical and mechanical properties of cellulosic natural fibers
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.06.105
– volume: 132
  start-page: 1
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0095
  article-title: Recent advances in nanocellulose for biomedical applications
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.41719
– volume: 40
  start-page: 8377
  year: 2014
  ident: 10.1016/j.btre.2019.e00350_bib0210
  article-title: Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.01.044
– volume: 11
  start-page: 4605
  year: 2016
  ident: 10.1016/j.btre.2019.e00350_bib0040
  article-title: Layer-by-layer deposition of TiO2 nanoparticles in the wood surface and its superhydrophobic performance
  publication-title: BioResources
  doi: 10.15376/biores.11.2.4605-4620
– volume: 24
  year: 2014
  ident: 10.1016/j.btre.2019.e00350_bib0255
  article-title: Functionalized TiO2 based nanomaterials for biomedical applications
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 556
  year: 2016
  ident: 10.1016/j.btre.2019.e00350_bib0120
  article-title: Repairing human tooth enamel with leucine-rich amelogenin peptide-chitosan hydrogel
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2016.64
– volume: 46
  start-page: 2242
  year: 2012
  ident: 10.1016/j.btre.2019.e00350_bib0005
  article-title: Titanium dioxide nanoparticles in food and personal care products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es204168d
– volume: 57
  start-page: 452
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0185
  article-title: Design of biocomposite materials for bone tissue regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.07.016
– volume: 77
  start-page: 731
  year: 2017
  ident: 10.1016/j.btre.2019.e00350_bib0175
  article-title: Freeze-casting for PLGA/carbonated apatite composite scaffolds: structure and properties
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.03.302
– volume: 14
  start-page: 88
  year: 2011
  ident: 10.1016/j.btre.2019.e00350_bib0165
  article-title: Biomaterials & scaffolds for tissue engineering
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70058-X
– volume: 53
  start-page: 28
  year: 2000
  ident: 10.1016/j.btre.2019.e00350_bib0225
  article-title: Bonding of alkali- and heat-treated tantalum implants to bone
  publication-title: J. Biomed. Mater. Res. Appl. Biomater.
  doi: 10.1002/(SICI)1097-4636(2000)53:1<28::AID-JBM4>3.0.CO;2-F
– volume: 149
  start-page: 522
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0045
  article-title: A transparent CNTs/TiO2 composite film with superhydrophobic and photocatalytic functions self-assembled by liquid-phase deposition
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.11.002
– issue: 2015
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0110
  article-title: Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine
  publication-title: Biomed Res. Int.
– volume: 150
  start-page: 107
  year: 2016
  ident: 10.1016/j.btre.2019.e00350_bib0025
  article-title: Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.05.006
– volume: 4
  issue: 4
  year: 2019
  ident: 10.1016/j.btre.2019.e00350_bib0135
  article-title: Chitosan—PRP nanosphere as a growth factors slow releasing device with superior antibacterial capability
  publication-title: Biomed. Phys. Eng. Exp.
– volume: 93
  start-page: 33
  year: 2017
  ident: 10.1016/j.btre.2019.e00350_bib0200
  article-title: Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2016.11.012
– volume: 44
  start-page: 1861
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0020
  article-title: Black titanium dioxide (TiO2) nanomaterials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00330F
– volume: 49
  start-page: 780
  year: 2013
  ident: 10.1016/j.btre.2019.e00350_bib0115
  article-title: Chitosan-based biomaterials for tissue engineering
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2012.12.009
– volume: 55
  start-page: 592
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0130
  article-title: Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.05.072
– volume: 85
  start-page: 25
  year: 2008
  ident: 10.1016/j.btre.2019.e00350_bib0160
  article-title: J.L. Gómez Ribelles, M. Monleón, J.C. Monllau, J. Suay, Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering
  publication-title: J. Biomed. Mater. Res. - Part A.
  doi: 10.1002/jbm.a.31396
– volume: 36
  start-page: 2049
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0010
  article-title: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)60999-8
– volume: 7
  start-page: 5561
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0065
  article-title: Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00210
– volume: 276
  start-page: 374
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0070
  article-title: Micro- and nano-textured, hydrophilic and bioactive titanium dental implants
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2015.06.042
– volume: 13
  start-page: 1819
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0260
  article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications
  publication-title: Mar. Drugs
  doi: 10.3390/md13041819
– volume: 27
  start-page: 1143
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0140
  article-title: Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403354
– volume: vol. 4
  start-page: 411
  year: 2017
  ident: 10.1016/j.btre.2019.e00350_bib0100
– volume: 30
  start-page: 315
  year: 2012
  ident: 10.1016/j.btre.2019.e00350_bib0215
  article-title: TiO2 nanotubes for bone regeneration
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2012.02.005
– volume: 26
  start-page: 1
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0195
  article-title: Titanium nanostructures for biomedical applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/6/062002
– volume: 42
  start-page: 2
  year: 2016
  ident: 10.1016/j.btre.2019.e00350_bib0030
  article-title: A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2015.07.052
– start-page: 97
  year: 2007
  ident: 10.1016/j.btre.2019.e00350_bib0230
  article-title: Chapter 7: simulated body fluid (SBF) as a standard tool to test the bioactivity of implants
– volume: 26
  start-page: 331
  year: 2011
  ident: 10.1016/j.btre.2019.e00350_bib0240
  article-title: The biological function of DMP1 in Osteocyte Maturation is mediated by its 57-kDa C-terminal fragment
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.226
– volume: 76
  start-page: 172
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0080
  article-title: Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.05.027
– volume: 17
  start-page: 743
  year: 2003
  ident: 10.1016/j.btre.2019.e00350_bib0250
  article-title: Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones H3 and H4
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2002-0122
– volume: 4
  start-page: 1166
  year: 2010
  ident: 10.1016/j.btre.2019.e00350_bib0035
  article-title: Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells
  publication-title: Optoelectron. Adv. Mater. Rapid Commun.
– volume: 95
  start-page: 506
  year: 2015
  ident: 10.1016/j.btre.2019.e00350_bib0090
  article-title: Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement - a review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.07.124
– volume: 67A
  start-page: 1305
  year: 2003
  ident: 10.1016/j.btre.2019.e00350_bib0220
  article-title: Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.20039
– volume: 10
  start-page: 1632
  year: 2014
  ident: 10.1016/j.btre.2019.e00350_bib0145
  article-title: Micro- and nanofabrication of chitosan structures for regenerative engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.07.003
– volume: 133
  start-page: 19
  year: 2016
  ident: 10.1016/j.btre.2019.e00350_bib0180
  article-title: Fabrication of a poly(ε-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue engineering applications
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.43523
– volume: 127
  start-page: 4186
  year: 2014
  ident: 10.1016/j.btre.2019.e00350_bib0265
  article-title: GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.150227
SSID ssj0001340569
Score 2.3034246
Snippet •Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability.•Nano titanium dioxide addition to the matrix of chitosan...
Chitosan has been a popular option for tissue engineering, however exhibits limited function for bone regeneration due to its low mechanical robustness and...
• Chitosan hybridized with titanium dioxide nanoparticles improves its bone regeneration capability. • Nano titanium dioxide addition to the matrix of chitosan...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00350
SubjectTerms apatite
biomineralization
biotechnology
body fluids
Bone regeneration
bones
Chitosan
cytotoxicity
Fourier transform infrared spectroscopy
gene expression regulation
genes
nanoparticles
quantitative polymerase chain reaction
Sponges
TiO2 nanoparticles
Tissue engineering
titanium dioxide
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhUBVp1y0NG6q1KG8ePOEdAoBVS28ui7s3yExYhBy3LgX_P2Mmi5LJcuDq2Y48f841n_BmhH6JklDU1KaQUtGBG0kKH2hZWhMrXZWBapMvJf_6K6Q27nvP54KmvFBPW0QN3gvsdAFEzpwUVBgoyq2XgUI0LxDsnfN59QecNjKl8ukIBiOT37CrQaWAv1_P-xkwX3GVWy8SRSZpfPvvWRlopk_ePlNMAfI5DJwe66Ooz-tSDSHzWNX4Pbfm4j3YH1IIH6P9lvMvOfWza6PHS32Z-6TQM2IKCzDGxL7gNODkS2icdcQqWvfXYtgA_HU4HtHi2-FfhqCNY1n0A3Rd0c3U5u5gW_SMKhQVLrywcSIpUQtNGy9o3mkuwIIitGsa4syUkeGMqB7iJcC1LbhgHi034QF2Q1jj6FW1HaOg3hK0xQQsSysoZJg1pbFNJZ2sw43TpqJsgshaisj3DeHro4kGtQ8nuVRK8SoJXneAn6OdbmceOX2Nj7vM0Nm85Ezd2ToAZo3pBqPdmzATx9ciqHmZ08AGqWmz8-el6GihYg8mxoqNvn58U7IkScJCUzaY8UkgOGeUE1aM5NOrN-Etc3GXGbwFmJhf0-0d0_xDtpE51ITlHaHu1fPbHAKxW5iSvoVeKGSSC
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles
URI https://dx.doi.org/10.1016/j.btre.2019.e00350
https://www.proquest.com/docview/2258152889
https://www.proquest.com/docview/2286852588
https://pubmed.ncbi.nlm.nih.gov/PMC6606563
https://doaj.org/article/f4874da636bf4a4ca8f5f2edf1edd6e2
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAKA-xFCojcUNhk_gR50irVhUScKAVe7P83AYhp9puD_z7zjhJ2Vz2wDHOOHHGk3nY34wJ-ShLznjbVIVSkhXcKlaY2LjCyViHpozcSExO_vZdXl7zryuxOiBnUy4MwipH3T_o9Kytx5blyM3lbdctf9ZgrUCeVuCCoGHDRHPGVU7iW53-W2dh4JLkk-2QvsAOY-7MAPOy2w1Wy6zazyHvss3sUy7jPzNTO27oHES5Y5UunpNnoztJvwwjPiIHIb0gT3eKDL4kv87TTd7mp7ZPgW7COleaxgmhDkxlRsf-pX2kuKXQ35lEETa7DtT14Ih6iku19Kr7UdNkEsTYI5TuFbm-OL86uyzG4xQKBzFfWXgfMV_IsNaoJrRGKIglKle3nAvvSmgI1tYePKhKGFUKywXEbjJE5qNy1rPX5DDBQN8Q6qyNRlaxrL3lylata2vlXQMBnSk98wtSTUzUbqw1jkde_NETqOy3RsZrZLweGL8gnx773A6VNvZSn-LcPFJilezc0G_WemSEjhCNcW8kkxaEjjujogARBD4E72WoF0RMM6tnQgeP6va-_MMkBhr-RtxiMSn093catCNIYq1Uu49GSSWAUC1IM5Oh2dfM76TuJtf-lhBwCsne_ufIj8kTvBrwOO_I4XZzH96DV7W1J3k14iT_PA8VCCP3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFNdnkbihsIm8SPOkVatttCWA1uxN8vPbRBKqu32wL9nxsmWzWUPXJ1x4ozHnm88DxPyUeac8boqMqUky7hVLDOxcpmTsQxVHrmRmJx8fiFnl_zrQiz2yNEmFwbDKoe9v9_T0249tEwHbk6vm2b6owRtBfK0AAiCik3cI_cBDVS4Ok8Xh_8OWhhgknS1HXbIsMeQPNPHedn1CstlFvXnkNxsIwWV6viP9NQWDh1HUW6ppZMn5PGAJ-mXfshPyV5on5FHW1UGn5Ofx-1V8vNT27WBrsIylZrGGaEOdGUKj_1Du0jRp9DdmJZi3OwyUNcBEvUUz2rpvPle0ta0YGQPsXQvyOXJ8fxolg33KWQOjL488z5iwpBhtVFVqI1QYEwUrqw5F97l0BCsLT1AqEIYlQvLBRhvMkTmo3LWs5dkv4WBHhDqrI1GFjEvveXKFrWrS-VdBRadyT3zE1JsmKjdUGwc77z4rTdRZb80Ml4j43XP-An5dNfnui-1sZP6EOfmjhLLZKeGbrXUAyN0BHOMeyOZtCB13BkVBcgg8CF4L0M5IWIzs3okdfCqZufHP2zEQMNyRB-LaUN3e6NhewRRLJWqd9EoqQQQqgmpRjI0-pvxk7a5SsW_JVicQrJX_zny9-TBbH5-ps9OL769Jg_xSR-c84bsr1e34S1ArLV9l5bQX9r9JiI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+bone+regeneration+capability+of+chitosan+sponge+coated+with+TiO2+nanoparticles&rft.jtitle=Biotechnology+reports+%28Amsterdam%2C+Netherlands%29&rft.au=Ikono%2C+Radyum&rft.au=Li%2C+Ni&rft.au=Pratama%2C+Nanda+Hendra&rft.au=Vibriani%2C+Agnia&rft.date=2019-12-01&rft.pub=Elsevier&rft.eissn=2215-017X&rft.volume=24&rft_id=info:doi/10.1016%2Fj.btre.2019.e00350&rft_id=info%3Apmid%2F31304101&rft.externalDocID=PMC6606563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-017X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-017X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-017X&client=summon