Optimizing Wind Power Hosting Capacity of Distribution Systems Using Cost Benefit Analysis

The penetration of wind power into the electricity grid is growing significantly. A significant portion of this wind power is being installed in distribution systems, of which most are passively operated. Under this operating practice, wind power can only be admitted based on minimum load and maximu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power delivery Vol. 29; no. 3; pp. 1436 - 1445
Main Authors Nursebo, Shemsedin, Peiyuan Chen, Carlson, Ola, Tjernberg, L. Bertling
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The penetration of wind power into the electricity grid is growing significantly. A significant portion of this wind power is being installed in distribution systems, of which most are passively operated. Under this operating practice, wind power can only be admitted based on minimum load and maximum generation consideration. This severely limits the wind power hosting capacity of the system. Hence, the use of active-management strategies (AMSs) has been proposed to increase the hosting capacity of distribution systems. This paper incorporates AMSs into two optimization models whose objectives are to maximize the net benefit of distribution system operator and wind farm owner, respectively. The AMSs considered are wind energy curtailment, coordinated on-load tap changer voltage control, and reactive power compensation. The models development is based on a typical medium-voltage distribution system in Sweden although it can easily be adapted to other cases. The application of the model to a distribution system in Sweden shows an increase in hosting capacity of the distribution system by 78% with mere 2.6% curtailed energy. That is, the hosting capacity of the distribution system has almost been doubled by using AMSs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8977
1937-4208
1937-4208
DOI:10.1109/TPWRD.2014.2303204