Midlife aerobic exercise and dynamic cerebral autoregulation: associations with baroreflex sensitivity and central arterial stiffness

Middle-aged athletes (MA) showed intact dynamic cerebral autoregulation (dCA) during sit-stand maneuvers when compared with young (YS) and middle-aged sedentary (MS) adults. Conversely, MA showed the significant attenuation of age-related carotid distensibility and baroreflex sensitivity (BRS) impai...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 131; no. 5; pp. 1599 - 1612
Main Authors Tomoto, Tsubasa, Repshas, Justin, Zhang, Rong, Tarumi, Takashi
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.11.2021
SeriesPhysical Activity and the Brain
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Middle-aged athletes (MA) showed intact dynamic cerebral autoregulation (dCA) during sit-stand maneuvers when compared with young (YS) and middle-aged sedentary (MS) adults. Conversely, MA showed the significant attenuation of age-related carotid distensibility and baroreflex sensitivity (BRS) impairments. In MA and YS groups, BRS was positively associated with dCA gain at rest and carotid distensibility. Our findings suggest that midlife aerobic exercise improves BRS by reducing central arterial stiffness, which contributes to CBF regulation through dCA. Midlife aerobic exercise may significantly impact age-related changes in the cerebro- and cardiovascular regulations. This study investigated the associations of midlife aerobic exercise with dynamic cerebral autoregulation (dCA), cardiovagal baroreflex sensitivity (BRS), and central arterial stiffness. Twenty middle-aged athletes (MA) who had aerobic training for >10 yr were compared with 20 young (YS) and 20 middle-aged sedentary (MS) adults. Beat-to-beat cerebral blood flow velocity, blood pressure (BP), and heart rate were measured at rest and during forced BP oscillations induced by repeated sit-stand maneuvers at 0.05 Hz. Transfer function analysis was used to calculate dCA and BRS parameters. Carotid distensibility was measured by ultrasonography. MA had the highest peak oxygen uptake (V̇o 2peak ) among all groups. During forced BP oscillations, MS showed lower BRS gain than YS, but this age-related reduction was absent in MA. Conversely, dCA was similar among all groups. At rest, BRS and dCA gains at low frequency (∼0.1 Hz) were higher in the MA than in MS and YS groups. Carotid distensibility was similar between MA and YS groups, but it was lower in the MS. Across all subjects, V̇o 2peak was positively associated with BRS gains at rest and during forced BP oscillations ( r = 0.257∼0.382, P = 0.003∼0.050) and carotid distensibility ( r = 0.428∼0.490, P = 0.001). Furthermore, dCA gain at rest and carotid distensibility were positively correlated with BRS gain at rest in YS and MA groups (all P < 0.05). These findings suggest that midlife aerobic exercise improves central arterial elasticity and BRS, which may contribute to cerebral blood flow (CBF) regulation through dCA. NEW & NOTEWORTHY Middle-aged athletes (MA) showed intact dynamic cerebral autoregulation (dCA) during sit-stand maneuvers when compared with young (YS) and middle-aged sedentary (MS) adults. Conversely, MA showed the significant attenuation of age-related carotid distensibility and baroreflex sensitivity (BRS) impairments. In MA and YS groups, BRS was positively associated with dCA gain at rest and carotid distensibility. Our findings suggest that midlife aerobic exercise improves BRS by reducing central arterial stiffness, which contributes to CBF regulation through dCA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:8750-7587
1522-1601
1522-1601
DOI:10.1152/japplphysiol.00243.2021