Current status data with two competing risks and time-dependent missing failure types

In competing risks data, in practice, there may be lack of information or uncertainty about the true failure type, termed as 'missing failure type', for some subjects. We consider a general pattern of missing failure type in which we observe, if not the true failure type, a set of possible...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 51; no. 9; pp. 1689 - 1708
Main Authors Koley, Tamalika, Dewanji, Anup
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.07.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In competing risks data, in practice, there may be lack of information or uncertainty about the true failure type, termed as 'missing failure type', for some subjects. We consider a general pattern of missing failure type in which we observe, if not the true failure type, a set of possible failure types containing the true one. In this work, we focus on both parametric and non-parametric estimation based on current status data with two competing risks and the above-mentioned missing failure type. Here, the missing probabilities are assumed to be time-dependent, that is, dependent on both failure and monitoring time points, in addition to being dependent on the true failure type. This makes the missing mechanism non-ignorable. We carry out maximum likelihood estimation and obtain the asymptotic properties of the estimators. Simulation studies are conducted to investigate the finite sample properties of the estimators. Finally, the methods are illustrated through a data set on hearing loss.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2023.2231174