Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization

The reversible interconversion of formate (HCOO−) and carbon dioxide (CO2) is catalyzed by formate dehydrogenase (FDH, EC 1.17.1.9). This enzyme can be used as a first step in the utilization of CO2 as carbon substrate for production of high-in-demand chemicals. However, comparison and categorizatio...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology advances Vol. 37; no. 7; p. 107408
Main Authors Nielsen, Christian Førgaard, Lange, Lene, Meyer, Anne S.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Inc 15.11.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The reversible interconversion of formate (HCOO−) and carbon dioxide (CO2) is catalyzed by formate dehydrogenase (FDH, EC 1.17.1.9). This enzyme can be used as a first step in the utilization of CO2 as carbon substrate for production of high-in-demand chemicals. However, comparison and categorization of the very diverse group of FDH enzymes has received only limited attention. With specific emphasis on FDH catalyzed CO2 reduction to HCOO−, we present a novel classification scheme for FDHs based on protein sequence alignment and gene organization analysis. We show that prokaryotic FDHs can be neatly divided into six meaningful sub-types. These sub-types are discussed in the context of overall structural composition, phylogeny of the gene segment organization, metabolic role, and catalytic properties of the enzymes. Based on the available literature, the influence of electron donor choice on the efficacy of FDH catalyzed CO2 reduction is quantified and compared. This analysis shows that methyl viologen and hydrogen are several times more potent than NADH as electron donors. Hence, the new FDH classification scheme and the electron donor analysis provide an improved base for developing FDH-facilitated CO2 reduction as a viable step in the utilization of CO2 as carbon source for green production of chemicals.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0734-9750
1873-1899
DOI:10.1016/j.biotechadv.2019.06.007