Phenolic Compounds from Sonchus arvensis Linn. and Hemerocallis citrina Baroni. Inhibit Sucrose and Stearic Acid Induced Damage in Caenorhabditis elegans

Sonchus arvensis Linn. and Hemerocallis citrina Baroni. have been reported to improve body resistance. However, the underlying mechanism is not clear. In this study, Sonchus arvensis Linn. phenolic compounds (SAP) and Hemerocallis citrina Baroni. phenolic compounds (HCP) were extracted and their pro...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 28; no. 4; p. 1707
Main Authors An, Qin, Zhang, Lei, Qin, Xiyue, Wang, Xiong, Wang, Wenli, Meng, Qingyong, Zhang, Yali
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sonchus arvensis Linn. and Hemerocallis citrina Baroni. have been reported to improve body resistance. However, the underlying mechanism is not clear. In this study, Sonchus arvensis Linn. phenolic compounds (SAP) and Hemerocallis citrina Baroni. phenolic compounds (HCP) were extracted and their protective effects in Caenorhabditis elegans evaluated. SAP and HCP showed considerably different phenolic compositions. In the normal C. elegans model, HCP exhibited better effects in promoting growth than SAP. In the sucrose-incubated C. elegans model, both SAP and HCP showed positive effects against the high-sucrose-induced damage. In the stearic acid-incubated C. elegans model, both SAP and HCP improved lifespan, reproductive ability and growth, while HCP had a more evident effect than SAP on reproductive ability. The TGF-β signaling pathway was confirmed to be involved in the protective effects of SAP and HCP. The antioxidant ability of SAP was also found to be related to skn-1. Our study shows that both SAP and HCP have protective effects against high sucrose- or high stearic acid-induced damage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28041707